root/doc/latex/classmgamma__fix.tex @ 160

Revision 145, 4.5 kB (checked in by smidl, 16 years ago)

Oprava dokumentace

  • Property svn:eol-style set to native
Line 
1\section{mgamma\_\-fix Class Reference}
2\label{classmgamma__fix}\index{mgamma\_\-fix@{mgamma\_\-fix}}
3Gamma random walk around a fixed point. 
4
5
6{\tt \#include $<$libEF.h$>$}
7
8Inheritance diagram for mgamma\_\-fix:\nopagebreak
9\begin{figure}[H]
10\begin{center}
11\leavevmode
12\includegraphics[width=58pt]{classmgamma__fix__inherit__graph}
13\end{center}
14\end{figure}
15Collaboration diagram for mgamma\_\-fix:\nopagebreak
16\begin{figure}[H]
17\begin{center}
18\leavevmode
19\includegraphics[width=76pt]{classmgamma__fix__coll__graph}
20\end{center}
21\end{figure}
22\subsection*{Public Member Functions}
23\begin{CompactItemize}
24\item 
25{\bf mgamma\_\-fix} (const {\bf RV} \&{\bf rv}, const {\bf RV} \&{\bf rvc})\label{classmgamma__fix_b92c3d2e5fd0381033a072e5ef3bcf80}
26
27\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
28void {\bf set\_\-parameters} (double k0, vec ref0, double l0)\label{classmgamma__fix_ec6f846896749e27cb7be9fa48dd1cb1}
29
30\begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item 
31void {\bf condition} (const vec \&val)\label{classmgamma__fix_6ea3931eec7b7da7b693e45981052460}
32
33\begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \doxyref{mpdf}{p.}{classmpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item 
34void {\bf set\_\-parameters} (double {\bf k})\label{classmgamma_a9d646cf758a70126dde7c48790b6e94}
35
36\begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item 
37vec {\bf samplecond} (vec \&cond, double \&lik)\label{classmgamma_9f40dc43885085fad8e3d6652b79e139}
38
39\begin{CompactList}\small\item\em Generate one sample of the posterior. \item\end{CompactList}\item 
40mat {\bf samplecond} (vec \&cond, vec \&lik, int n)\label{classmgamma_e9d52749793f40aad85b70c6db4435ae}
41
42\begin{CompactList}\small\item\em Generate matrix of samples of the posterior. \item\end{CompactList}\item 
43virtual double {\bf evalcond} (const vec \&dt, const vec \&cond)\label{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}
44
45\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \doxyref{epdf}{p.}{classepdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 
46{\bf RV} {\bf \_\-rvc} ()\label{classmpdf_ec9c850305984582548e8deb64f0ffe8}
47
48\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
49{\bf epdf} \& {\bf \_\-epdf} ()\label{classmpdf_e17780ee5b2cfe05922a6c56af1462f8}
50
51\begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize}
52\subsection*{Protected Attributes}
53\begin{CompactItemize}
54\item 
55double {\bf l}\label{classmgamma__fix_3f48c09caddc298901ad75fe7c0529f6}
56
57\begin{CompactList}\small\item\em parameter l \item\end{CompactList}\item 
58vec {\bf refl}\label{classmgamma__fix_81ce49029ecc385418619b200dcafeb0}
59
60\begin{CompactList}\small\item\em reference vector \item\end{CompactList}\item 
61{\bf egamma} {\bf epdf}\label{classmgamma_612dbf35c770a780027619aaac2c443e}
62
63\begin{CompactList}\small\item\em Internal \doxyref{epdf}{p.}{classepdf} that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item 
64double {\bf k}\label{classmgamma_43f733cce0245a52363d566099add687}
65
66\begin{CompactList}\small\item\em Constant $k$. \item\end{CompactList}\item 
67vec $\ast$ {\bf \_\-beta}\label{classmgamma_5e90652837448bcc29707e7412f99691}
68
69\begin{CompactList}\small\item\em cache of epdf.beta \item\end{CompactList}\item 
70{\bf RV} {\bf rv}\label{classmpdf_f6687c07ff07d47812dd565368ca59eb}
71
72\begin{CompactList}\small\item\em modeled random variable \item\end{CompactList}\item 
73{\bf RV} {\bf rvc}\label{classmpdf_acb7dda792b3cd5576f39fa3129abbab}
74
75\begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item 
76{\bf epdf} $\ast$ {\bf ep}\label{classmpdf_7aa894208a32f3487827df6d5054424c}
77
78\begin{CompactList}\small\item\em pointer to internal \doxyref{epdf}{p.}{classepdf} \item\end{CompactList}\end{CompactItemize}
79
80
81\subsection{Detailed Description}
82Gamma random walk around a fixed point.
83
84Mean value, $\mu$, of this density is given by a geometric combination of {\tt rvc} and given fixed point, $p$. $l$ is the coefficient of the geometric combimation \[ \mu = \mu_{t-1} ^{l} p^{1-l}\]
85
86Standard deviation of the random walk is proportional to one $k$-th the mean. This is achieved by setting $\alpha=k$ and $\beta=k/\mu$.
87
88The standard deviation of the walk is then: $\mu/\sqrt(k)$.
89
90The documentation for this class was generated from the following file:\begin{CompactItemize}
91\item 
92work/git/mixpp/bdm/stat/{\bf libEF.h}\end{CompactItemize}
Note: See TracBrowser for help on using the browser.