root/doc/latex/classmigamma.tex @ 245

Revision 234, 8.4 kB (checked in by smidl, 16 years ago)

doc

Line 
1\hypertarget{classmigamma}{
2\section{migamma Class Reference}
3\label{classmigamma}\index{migamma@{migamma}}
4}
5Inverse-Gamma random walk. 
6
7
8{\tt \#include $<$libEF.h$>$}
9
10Inheritance diagram for migamma:\nopagebreak
11\begin{figure}[H]
12\begin{center}
13\leavevmode
14\includegraphics[width=62pt]{classmigamma__inherit__graph}
15\end{center}
16\end{figure}
17Collaboration diagram for migamma:\nopagebreak
18\begin{figure}[H]
19\begin{center}
20\leavevmode
21\includegraphics[height=400pt]{classmigamma__coll__graph}
22\end{center}
23\end{figure}
24\subsection*{Public Member Functions}
25\begin{CompactItemize}
26\item 
27\hypertarget{classmigamma_81d6f9fe46acec656ccde245220b7090}{
28\hyperlink{classmigamma_81d6f9fe46acec656ccde245220b7090}{migamma} (const \hyperlink{classRV}{RV} \&\hyperlink{classmpdf_f6687c07ff07d47812dd565368ca59eb}{rv}, const \hyperlink{classRV}{RV} \&\hyperlink{classmpdf_acb7dda792b3cd5576f39fa3129abbab}{rvc})}
29\label{classmigamma_81d6f9fe46acec656ccde245220b7090}
30
31\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 
32\hypertarget{classmigamma_6cf801c0319ffcfc6317e9f2ecef4cf8}{
33void \hyperlink{classmigamma_6cf801c0319ffcfc6317e9f2ecef4cf8}{set\_\-parameters} (double k0)}
34\label{classmigamma_6cf801c0319ffcfc6317e9f2ecef4cf8}
35
36\begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item 
37\hypertarget{classmigamma_739c196dfcc586dec49043150da6ed0d}{
38void \hyperlink{classmigamma_739c196dfcc586dec49043150da6ed0d}{condition} (const vec \&val)}
39\label{classmigamma_739c196dfcc586dec49043150da6ed0d}
40
41\begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classmpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item 
42virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll)
43\begin{CompactList}\small\item\em Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item\end{CompactList}\item 
44virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N)
45\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 
46\hypertarget{classmpdf_2ef8a6374029d990a678782f6decebbe}{
47virtual double \hyperlink{classmpdf_2ef8a6374029d990a678782f6decebbe}{evallogcond} (const vec \&dt, const vec \&cond)}
48\label{classmpdf_2ef8a6374029d990a678782f6decebbe}
49
50\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 
51\hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{
52virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)}
53\label{classmpdf_95fcff214848f66f1b489459370573fa}
54
55\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item 
56\hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{
57\hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const }
58\label{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}
59
60\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
61\hypertarget{classmpdf_71256ffb5fbd08f41d650e606a5bd585}{
62\hyperlink{classRV}{RV} \hyperlink{classmpdf_71256ffb5fbd08f41d650e606a5bd585}{\_\-rv} () const }
63\label{classmpdf_71256ffb5fbd08f41d650e606a5bd585}
64
65\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
66\hypertarget{classmpdf_e17780ee5b2cfe05922a6c56af1462f8}{
67\hyperlink{classepdf}{epdf} \& \hyperlink{classmpdf_e17780ee5b2cfe05922a6c56af1462f8}{\_\-epdf} ()}
68\label{classmpdf_e17780ee5b2cfe05922a6c56af1462f8}
69
70\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
71\hypertarget{classmpdf_75ded3b0f657cd7da6590691a810963c}{
72\hyperlink{classepdf}{epdf} $\ast$ \hyperlink{classmpdf_75ded3b0f657cd7da6590691a810963c}{\_\-e} ()}
73\label{classmpdf_75ded3b0f657cd7da6590691a810963c}
74
75\begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize}
76\subsection*{Protected Attributes}
77\begin{CompactItemize}
78\item 
79\hypertarget{classmigamma_74712a98f587efdf35da540f7f5b5d0d}{
80\hyperlink{classeigamma}{eigamma} \hyperlink{classmigamma_74712a98f587efdf35da540f7f5b5d0d}{epdf}}
81\label{classmigamma_74712a98f587efdf35da540f7f5b5d0d}
82
83\begin{CompactList}\small\item\em Internal \hyperlink{classepdf}{epdf} that arise by conditioning on {\tt rvc}. \item\end{CompactList}\item 
84\hypertarget{classmigamma_8425bc642c6f7876b578e666c841fa9c}{
85double \hyperlink{classmigamma_8425bc642c6f7876b578e666c841fa9c}{k}}
86\label{classmigamma_8425bc642c6f7876b578e666c841fa9c}
87
88\begin{CompactList}\small\item\em Constant $k$. \item\end{CompactList}\item 
89\hypertarget{classmigamma_92c2e81705d8edb58181b61af75574e0}{
90vec $\ast$ \hyperlink{classmigamma_92c2e81705d8edb58181b61af75574e0}{\_\-beta}}
91\label{classmigamma_92c2e81705d8edb58181b61af75574e0}
92
93\begin{CompactList}\small\item\em cache of epdf.beta \item\end{CompactList}\item 
94\hypertarget{classmigamma_fb9bf89eb2c15fc267c97eef2218ebfa}{
95vec $\ast$ \hyperlink{classmigamma_fb9bf89eb2c15fc267c97eef2218ebfa}{\_\-alpha}}
96\label{classmigamma_fb9bf89eb2c15fc267c97eef2218ebfa}
97
98\begin{CompactList}\small\item\em chaceh of epdf.alpha \item\end{CompactList}\item 
99\hypertarget{classmpdf_f6687c07ff07d47812dd565368ca59eb}{
100\hyperlink{classRV}{RV} \hyperlink{classmpdf_f6687c07ff07d47812dd565368ca59eb}{rv}}
101\label{classmpdf_f6687c07ff07d47812dd565368ca59eb}
102
103\begin{CompactList}\small\item\em modeled random variable \item\end{CompactList}\item 
104\hypertarget{classmpdf_acb7dda792b3cd5576f39fa3129abbab}{
105\hyperlink{classRV}{RV} \hyperlink{classmpdf_acb7dda792b3cd5576f39fa3129abbab}{rvc}}
106\label{classmpdf_acb7dda792b3cd5576f39fa3129abbab}
107
108\begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item 
109\hypertarget{classmpdf_7aa894208a32f3487827df6d5054424c}{
110\hyperlink{classepdf}{epdf} $\ast$ \hyperlink{classmpdf_7aa894208a32f3487827df6d5054424c}{ep}}
111\label{classmpdf_7aa894208a32f3487827df6d5054424c}
112
113\begin{CompactList}\small\item\em pointer to internal \hyperlink{classepdf}{epdf} \item\end{CompactList}\end{CompactItemize}
114
115
116\subsection{Detailed Description}
117Inverse-Gamma random walk.
118
119Mean value, $\mu$, of this density is given by {\tt rvc} . Standard deviation of the random walk is proportional to one $k$-th the mean. This is achieved by setting $\alpha=\mu/k+2$ and $\beta=\mu(\alpha-1)$.
120
121The standard deviation of the walk is then: $\mu/\sqrt(k)$.
122
123\subsection{Member Function Documentation}
124\hypertarget{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{
125\index{migamma@{migamma}!samplecond@{samplecond}}
126\index{samplecond@{samplecond}!migamma@{migamma}}
127\subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec mpdf::samplecond (const vec \& {\em cond}, \/  double \& {\em ll})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
128\label{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}
129
130
131Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$.
132
133\begin{Desc}
134\item[Parameters:]
135\begin{description}
136\item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description}
137\end{Desc}
138
139
140Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}.
141
142References mpdf::condition(), mpdf::ep, epdf::evallog(), and epdf::sample().
143
144Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{
145\index{migamma@{migamma}!samplecond\_\-m@{samplecond\_\-m}}
146\index{samplecond\_\-m@{samplecond\_\-m}!migamma@{migamma}}
147\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}}
148\label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}
149
150
151Returns.
152
153\begin{Desc}
154\item[Parameters:]
155\begin{description}
156\item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description}
157\end{Desc}
158
159
160References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample().
161
162The documentation for this class was generated from the following file:\begin{CompactItemize}
163\item 
164work/git/mixpp/bdm/stat/\hyperlink{libEF_8h}{libEF.h}\end{CompactItemize}
Note: See TracBrowser for help on using the browser.