root/doc/latex/classsqmat.tex @ 140

Revision 140, 6.3 kB (checked in by smidl, 16 years ago)

Latex doc

  • Property svn:eol-style set to native
RevLine 
[8]1\section{sqmat Class Reference}
2\label{classsqmat}\index{sqmat@{sqmat}}
3Virtual class for representation of double symmetric matrices in square-root form. 
4
5
6{\tt \#include $<$libDC.h$>$}
7
[19]8Inheritance diagram for sqmat:\nopagebreak
9\begin{figure}[H]
[8]10\begin{center}
11\leavevmode
[91]12\includegraphics[width=104pt]{classsqmat__inherit__graph}
[8]13\end{center}
14\end{figure}
15\subsection*{Public Member Functions}
16\begin{CompactItemize}
17\item 
18virtual void {\bf opupdt} (const vec \&v, double w)=0
19\item 
20virtual mat {\bf to\_\-mat} ()=0\label{classsqmat_9a5b6fddfeb42339e1dc9b978a2590fc}
21
22\begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item 
[32]23virtual void {\bf mult\_\-sym} (const mat \&C)=0
[79]24\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \item\end{CompactList}\item 
[32]25virtual void {\bf mult\_\-sym\_\-t} (const mat \&C)=0
[79]26\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \item\end{CompactList}\item 
[32]27virtual double {\bf logdet} () const =0\label{classsqmat_0a772b396750eeeed85d69fa72478b45}
[8]28
29\begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item 
[33]30virtual vec {\bf sqrt\_\-mult} (const vec \&v) const =0
[79]31\begin{CompactList}\small\item\em Multiplies square root of $V$ by vector $x$. \item\end{CompactList}\item 
[33]32virtual double {\bf qform} (const vec \&v) const =0\label{classsqmat_fc026312eb02ba09f85d5aacd6f05ab3}
[8]33
[79]34\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*V*v$;. \item\end{CompactList}\item 
35virtual double {\bf invqform} (const vec \&v) const =0\label{classsqmat_6230e8e8a9341866aaa0ce008691aac2}
36
37\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*inv(V)*v$;. \item\end{CompactList}\item 
[8]38virtual void {\bf clear} ()=0\label{classsqmat_6fca246f9eabbdeb8cac03030e826b5e}
39
40\begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item 
[22]41int {\bf cols} () const \label{classsqmat_ecc2e2540f95a04f4449842588170f5b}
[8]42
[22]43\begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\item 
44int {\bf rows} () const \label{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}
[8]45
[32]46\begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\item 
47virtual {\bf $\sim$sqmat} ()\label{classsqmat_0481f2067bb32aaea7e6d4f27e46b656}
48
[33]49\begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item 
50{\bf sqmat} (const int dim0)\label{classsqmat_4268750c040c716b2c05037f725078a2}
51
52\begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\end{CompactItemize}
[19]53\subsection*{Protected Attributes}
[8]54\begin{CompactItemize}
55\item 
[33]56int {\bf dim}\label{classsqmat_0abed904bdc0882373ba9adba919689d}
[8]57
[33]58\begin{CompactList}\small\item\em dimension of the square matrix \item\end{CompactList}\end{CompactItemize}
[8]59
60
61\subsection{Detailed Description}
62Virtual class for representation of double symmetric matrices in square-root form.
63
[37]64All operations defined on this class should be optimized for the chosen decomposition.
[8]65
66\subsection{Member Function Documentation}
67\index{sqmat@{sqmat}!opupdt@{opupdt}}
68\index{opupdt@{opupdt}!sqmat@{sqmat}}
[140]69\subsubsection[opupdt]{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::opupdt (const vec \& {\em v}, \/  double {\em w})\hspace{0.3cm}{\tt  [pure virtual]}}\label{classsqmat_b223484796661f2dadb5607a86ce0581}
[8]70
71
[79]72Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$. \begin{Desc}
[8]73\item[Parameters:]
74\begin{description}
75\item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description}
76\end{Desc}
[22]77BLAS-2b operation.
78
[91]79Implemented in {\bf chmat} \doxyref{}{p.}{classchmat_bbc2d98d7455b1f38828907d442836bf}, {\bf fsqmat} \doxyref{}{p.}{classfsqmat_b36530e155667fe9f1bd58394e50c65a}, and {\bf ldmat} \doxyref{}{p.}{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a}.\index{sqmat@{sqmat}!mult\_\-sym@{mult\_\-sym}}
80\index{mult\_\-sym@{mult\_\-sym}!sqmat@{sqmat}}
[140]81\subsubsection[mult\_\-sym]{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt  [pure virtual]}}\label{classsqmat_60fbbfa9e483b8187c135f787ee53afa}
[8]82
83
[79]84Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$.
[8]85
86\begin{Desc}
87\item[Parameters:]
88\begin{description}
[32]89\item[{\em C}]multiplying matrix, \end{description}
[8]90\end{Desc}
[22]91
92
[91]93Implemented in {\bf chmat} \doxyref{}{p.}{classchmat_66f509f92b0ccf020e2a2a32566e0777}, {\bf fsqmat} \doxyref{}{p.}{classfsqmat_5530d2756b5d991de755e6121c9a452e}, and {\bf ldmat} \doxyref{}{p.}{classldmat_e967b9425007f0cb6cd59b845f9756d8}.\index{sqmat@{sqmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}}
94\index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!sqmat@{sqmat}}
[140]95\subsubsection[mult\_\-sym\_\-t]{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt  [pure virtual]}}\label{classsqmat_6909e906da17725b1b80f3cae7cf3325}
[32]96
97
[79]98Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$.
[32]99
100\begin{Desc}
101\item[Parameters:]
102\begin{description}
103\item[{\em C}]multiplying matrix, \end{description}
104\end{Desc}
105
106
[91]107Implemented in {\bf chmat} \doxyref{}{p.}{classchmat_07f50d1332b901eee962e8b1913102f7}, {\bf fsqmat} \doxyref{}{p.}{classfsqmat_92052a8adc2054b63e42d1373d145c89}, and {\bf ldmat} \doxyref{}{p.}{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9}.\index{sqmat@{sqmat}!sqrt\_\-mult@{sqrt\_\-mult}}
108\index{sqrt\_\-mult@{sqrt\_\-mult}!sqmat@{sqmat}}
[140]109\subsubsection[sqrt\_\-mult]{\setlength{\rightskip}{0pt plus 5cm}virtual vec sqmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt  [pure virtual]}}\label{classsqmat_6b79438b5d7544a9c8e110a145355d8f}
[8]110
111
[79]112Multiplies square root of $V$ by vector $x$.
[19]113
114Used e.g. in generating normal samples.
115
[37]116Implemented in {\bf chmat} \doxyref{}{p.}{classchmat_b22aa239dbaca33e3fb93b4f674d7051}, {\bf fsqmat} \doxyref{}{p.}{classfsqmat_842a774077ee34ac3c36d180ab33e103}, and {\bf ldmat} \doxyref{}{p.}{classldmat_fc380626ced6f9244fb58c5f0231174d}.
[22]117
[8]118The documentation for this class was generated from the following file:\begin{CompactItemize}
119\item 
[19]120work/mixpp/bdm/math/{\bf libDC.h}\end{CompactItemize}
Note: See TracBrowser for help on using the browser.