[8] | 1 | \section{sqmat Class Reference} |
---|
| 2 | \label{classsqmat}\index{sqmat@{sqmat}} |
---|
| 3 | Virtual class for representation of double symmetric matrices in square-root form. |
---|
| 4 | |
---|
| 5 | |
---|
| 6 | {\tt \#include $<$libDC.h$>$} |
---|
| 7 | |
---|
[19] | 8 | Inheritance diagram for sqmat:\nopagebreak |
---|
| 9 | \begin{figure}[H] |
---|
[8] | 10 | \begin{center} |
---|
| 11 | \leavevmode |
---|
[19] | 12 | \includegraphics[width=78pt]{classsqmat__inherit__graph} |
---|
[8] | 13 | \end{center} |
---|
| 14 | \end{figure} |
---|
| 15 | \subsection*{Public Member Functions} |
---|
| 16 | \begin{CompactItemize} |
---|
| 17 | \item |
---|
| 18 | virtual void {\bf opupdt} (const vec \&v, double w)=0 |
---|
| 19 | \item |
---|
| 20 | virtual mat {\bf to\_\-mat} ()=0\label{classsqmat_9a5b6fddfeb42339e1dc9b978a2590fc} |
---|
| 21 | |
---|
| 22 | \begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item |
---|
| 23 | virtual void {\bf mult\_\-sym} (const mat \&C, bool trans=true)=0 |
---|
| 24 | \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. \item\end{CompactList}\item |
---|
| 25 | virtual double {\bf logdet} ()=0\label{classsqmat_5c852819589f74cdaefbd648c0ce8547} |
---|
| 26 | |
---|
| 27 | \begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item |
---|
[19] | 28 | virtual vec {\bf sqrt\_\-mult} (vec \&v)=0 |
---|
| 29 | \begin{CompactList}\small\item\em Multiplies square root of \$V\$ by vector \$x\$. \item\end{CompactList}\item |
---|
[8] | 30 | virtual double {\bf qform} (vec \&v)=0\label{classsqmat_44e079468bc8bfccf634dc85b32ba6be} |
---|
| 31 | |
---|
| 32 | \begin{CompactList}\small\item\em Evaluates quadratic form \$x= v'$\ast$V$\ast$v\$;. \item\end{CompactList}\item |
---|
| 33 | virtual void {\bf clear} ()=0\label{classsqmat_6fca246f9eabbdeb8cac03030e826b5e} |
---|
| 34 | |
---|
| 35 | \begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item |
---|
[22] | 36 | int {\bf cols} () const \label{classsqmat_ecc2e2540f95a04f4449842588170f5b} |
---|
[8] | 37 | |
---|
[22] | 38 | \begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\item |
---|
| 39 | int {\bf rows} () const \label{classsqmat_071e80ced9cc3b8cbb360fa7462eb646} |
---|
[8] | 40 | |
---|
[22] | 41 | \begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\end{CompactItemize} |
---|
[19] | 42 | \subsection*{Protected Attributes} |
---|
[8] | 43 | \begin{CompactItemize} |
---|
| 44 | \item |
---|
[19] | 45 | int \textbf{dim}\label{classsqmat_0abed904bdc0882373ba9adba919689d} |
---|
[8] | 46 | |
---|
| 47 | \end{CompactItemize} |
---|
| 48 | |
---|
| 49 | |
---|
| 50 | \subsection{Detailed Description} |
---|
| 51 | Virtual class for representation of double symmetric matrices in square-root form. |
---|
| 52 | |
---|
| 53 | All operations defined on this class should be optimized for the chosed decomposition. |
---|
| 54 | |
---|
| 55 | \subsection{Member Function Documentation} |
---|
| 56 | \index{sqmat@{sqmat}!opupdt@{opupdt}} |
---|
| 57 | \index{opupdt@{opupdt}!sqmat@{sqmat}} |
---|
| 58 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::opupdt (const vec \& {\em v}, double {\em w})\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_b223484796661f2dadb5607a86ce0581} |
---|
| 59 | |
---|
| 60 | |
---|
| 61 | Perfroms a rank-1 update by outer product of vectors: \$V = V + w v v'\$. \begin{Desc} |
---|
| 62 | \item[Parameters:] |
---|
| 63 | \begin{description} |
---|
| 64 | \item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description} |
---|
| 65 | \end{Desc} |
---|
[22] | 66 | BLAS-2b operation. |
---|
| 67 | |
---|
| 68 | Implemented in {\bf fsqmat} \doxyref{}{p.}{classfsqmat_b36530e155667fe9f1bd58394e50c65a}.\index{sqmat@{sqmat}!mult_sym@{mult\_\-sym}} |
---|
[8] | 69 | \index{mult_sym@{mult\_\-sym}!sqmat@{sqmat}} |
---|
| 70 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym (const mat \& {\em C}, bool {\em trans} = {\tt true})\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_faa3bc90be142adde9cf74f573c70157} |
---|
| 71 | |
---|
| 72 | |
---|
| 73 | Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. |
---|
| 74 | |
---|
| 75 | \begin{Desc} |
---|
| 76 | \item[Parameters:] |
---|
| 77 | \begin{description} |
---|
| 78 | \item[{\em C}]multiplying matrix, \item[{\em trans}]if true, product \$V = C'$\ast$V$\ast$C\$ will be computed instead; \end{description} |
---|
| 79 | \end{Desc} |
---|
[22] | 80 | |
---|
| 81 | |
---|
| 82 | Implemented in {\bf fsqmat} \doxyref{}{p.}{classfsqmat_acc5d2d0a243f1de6d0106065f01f518}.\index{sqmat@{sqmat}!sqrt_mult@{sqrt\_\-mult}} |
---|
[19] | 83 | \index{sqrt_mult@{sqrt\_\-mult}!sqmat@{sqmat}} |
---|
| 84 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual vec sqmat::sqrt\_\-mult (vec \& {\em v})\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_b5236c8a050199e1a9d338b0da1a08d2} |
---|
[8] | 85 | |
---|
| 86 | |
---|
[19] | 87 | Multiplies square root of \$V\$ by vector \$x\$. |
---|
| 88 | |
---|
| 89 | Used e.g. in generating normal samples. |
---|
| 90 | |
---|
[22] | 91 | Implemented in {\bf fsqmat} \doxyref{}{p.}{classfsqmat_6648dd4291b809cce14e8497d0433ad3}. |
---|
| 92 | |
---|
[8] | 93 | The documentation for this class was generated from the following file:\begin{CompactItemize} |
---|
| 94 | \item |
---|
[19] | 95 | work/mixpp/bdm/math/{\bf libDC.h}\end{CompactItemize} |
---|