root/doc/latex/classsqmat.tex @ 270

Revision 270, 8.0 kB (checked in by smidl, 16 years ago)

Changes in the very root classes!
* rv and rvc are no longer compulsory,
* samplecond does not return ll
* BM has drv

  • Property svn:eol-style set to native
RevLine 
[172]1\hypertarget{classsqmat}{
[8]2\section{sqmat Class Reference}
3\label{classsqmat}\index{sqmat@{sqmat}}
[172]4}
[8]5{\tt \#include $<$libDC.h$>$}
6
[19]7Inheritance diagram for sqmat:\nopagebreak
8\begin{figure}[H]
[8]9\begin{center}
10\leavevmode
[181]11\includegraphics[width=110pt]{classsqmat__inherit__graph}
[8]12\end{center}
13\end{figure}
[270]14
15
16\subsection{Detailed Description}
17Virtual class for representation of double symmetric matrices in square-root form.
18
19All operations defined on this class should be optimized for the chosen decomposition. \subsection*{Public Member Functions}
[8]20\begin{CompactItemize}
21\item 
[172]22virtual void \hyperlink{classsqmat_b223484796661f2dadb5607a86ce0581}{opupdt} (const vec \&v, double w)=0
[8]23\item 
[172]24\hypertarget{classsqmat_cd0ea3701e4493f353499755fba6e07f}{
25virtual mat \hyperlink{classsqmat_cd0ea3701e4493f353499755fba6e07f}{to\_\-mat} () const =0}
26\label{classsqmat_cd0ea3701e4493f353499755fba6e07f}
[8]27
28\begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item 
[172]29virtual void \hyperlink{classsqmat_60fbbfa9e483b8187c135f787ee53afa}{mult\_\-sym} (const mat \&C)=0
[79]30\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \item\end{CompactList}\item 
[172]31virtual void \hyperlink{classsqmat_6909e906da17725b1b80f3cae7cf3325}{mult\_\-sym\_\-t} (const mat \&C)=0
[79]32\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \item\end{CompactList}\item 
[172]33\hypertarget{classsqmat_0a772b396750eeeed85d69fa72478b45}{
34virtual double \hyperlink{classsqmat_0a772b396750eeeed85d69fa72478b45}{logdet} () const =0}
35\label{classsqmat_0a772b396750eeeed85d69fa72478b45}
[8]36
37\begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item 
[172]38virtual vec \hyperlink{classsqmat_6b79438b5d7544a9c8e110a145355d8f}{sqrt\_\-mult} (const vec \&v) const =0
[79]39\begin{CompactList}\small\item\em Multiplies square root of $V$ by vector $x$. \item\end{CompactList}\item 
[172]40\hypertarget{classsqmat_fc026312eb02ba09f85d5aacd6f05ab3}{
41virtual double \hyperlink{classsqmat_fc026312eb02ba09f85d5aacd6f05ab3}{qform} (const vec \&v) const =0}
42\label{classsqmat_fc026312eb02ba09f85d5aacd6f05ab3}
[8]43
[79]44\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*V*v$;. \item\end{CompactList}\item 
[172]45\hypertarget{classsqmat_6230e8e8a9341866aaa0ce008691aac2}{
46virtual double \hyperlink{classsqmat_6230e8e8a9341866aaa0ce008691aac2}{invqform} (const vec \&v) const =0}
47\label{classsqmat_6230e8e8a9341866aaa0ce008691aac2}
[79]48
49\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*inv(V)*v$;. \item\end{CompactList}\item 
[172]50\hypertarget{classsqmat_6fca246f9eabbdeb8cac03030e826b5e}{
51virtual void \hyperlink{classsqmat_6fca246f9eabbdeb8cac03030e826b5e}{clear} ()=0}
52\label{classsqmat_6fca246f9eabbdeb8cac03030e826b5e}
[8]53
54\begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item 
[172]55\hypertarget{classsqmat_ecc2e2540f95a04f4449842588170f5b}{
56int \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols} () const }
57\label{classsqmat_ecc2e2540f95a04f4449842588170f5b}
[8]58
[172]59\begin{CompactList}\small\item\em Reimplementing common functions of mat: \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols()}. \item\end{CompactList}\item 
60\hypertarget{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}{
61int \hyperlink{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}{rows} () const }
62\label{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}
[8]63
[172]64\begin{CompactList}\small\item\em Reimplementing common functions of mat: \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols()}. \item\end{CompactList}\item 
65\hypertarget{classsqmat_0481f2067bb32aaea7e6d4f27e46b656}{
66virtual \hyperlink{classsqmat_0481f2067bb32aaea7e6d4f27e46b656}{$\sim$sqmat} ()}
67\label{classsqmat_0481f2067bb32aaea7e6d4f27e46b656}
[32]68
[33]69\begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item 
[172]70\hypertarget{classsqmat_4268750c040c716b2c05037f725078a2}{
71\hyperlink{classsqmat_4268750c040c716b2c05037f725078a2}{sqmat} (const int dim0)}
72\label{classsqmat_4268750c040c716b2c05037f725078a2}
[33]73
[270]74\begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item 
75\hypertarget{classsqmat_5493a4a11a2b3c41de9cdd8ce305bb44}{
76\hyperlink{classsqmat_5493a4a11a2b3c41de9cdd8ce305bb44}{sqmat} ()}
77\label{classsqmat_5493a4a11a2b3c41de9cdd8ce305bb44}
78
[33]79\begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\end{CompactItemize}
[19]80\subsection*{Protected Attributes}
[8]81\begin{CompactItemize}
82\item 
[172]83\hypertarget{classsqmat_0abed904bdc0882373ba9adba919689d}{
84int \hyperlink{classsqmat_0abed904bdc0882373ba9adba919689d}{dim}}
85\label{classsqmat_0abed904bdc0882373ba9adba919689d}
[8]86
[33]87\begin{CompactList}\small\item\em dimension of the square matrix \item\end{CompactList}\end{CompactItemize}
[8]88
89
90\subsection{Member Function Documentation}
[172]91\hypertarget{classsqmat_b223484796661f2dadb5607a86ce0581}{
[8]92\index{sqmat@{sqmat}!opupdt@{opupdt}}
93\index{opupdt@{opupdt}!sqmat@{sqmat}}
[172]94\subsubsection[opupdt]{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::opupdt (const vec \& {\em v}, \/  double {\em w})\hspace{0.3cm}{\tt  \mbox{[}pure virtual\mbox{]}}}}
95\label{classsqmat_b223484796661f2dadb5607a86ce0581}
[8]96
97
[79]98Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$. \begin{Desc}
[8]99\item[Parameters:]
100\begin{description}
101\item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description}
102\end{Desc}
[22]103BLAS-2b operation.
104
[172]105Implemented in \hyperlink{classchmat_bbc2d98d7455b1f38828907d442836bf}{chmat}, \hyperlink{classfsqmat_b36530e155667fe9f1bd58394e50c65a}{fsqmat}, and \hyperlink{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a}{ldmat}.\hypertarget{classsqmat_60fbbfa9e483b8187c135f787ee53afa}{
106\index{sqmat@{sqmat}!mult\_\-sym@{mult\_\-sym}}
[91]107\index{mult\_\-sym@{mult\_\-sym}!sqmat@{sqmat}}
[172]108\subsubsection[mult\_\-sym]{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt  \mbox{[}pure virtual\mbox{]}}}}
109\label{classsqmat_60fbbfa9e483b8187c135f787ee53afa}
[8]110
111
[79]112Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$.
[8]113
114\begin{Desc}
115\item[Parameters:]
116\begin{description}
[32]117\item[{\em C}]multiplying matrix, \end{description}
[8]118\end{Desc}
[22]119
120
[172]121Implemented in \hyperlink{classchmat_66f509f92b0ccf020e2a2a32566e0777}{chmat}, \hyperlink{classfsqmat_5530d2756b5d991de755e6121c9a452e}{fsqmat}, and \hyperlink{classldmat_e967b9425007f0cb6cd59b845f9756d8}{ldmat}.\hypertarget{classsqmat_6909e906da17725b1b80f3cae7cf3325}{
122\index{sqmat@{sqmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}}
[91]123\index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!sqmat@{sqmat}}
[172]124\subsubsection[mult\_\-sym\_\-t]{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt  \mbox{[}pure virtual\mbox{]}}}}
125\label{classsqmat_6909e906da17725b1b80f3cae7cf3325}
[32]126
127
[79]128Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$.
[32]129
130\begin{Desc}
131\item[Parameters:]
132\begin{description}
133\item[{\em C}]multiplying matrix, \end{description}
134\end{Desc}
135
136
[172]137Implemented in \hyperlink{classchmat_07f50d1332b901eee962e8b1913102f7}{chmat}, \hyperlink{classfsqmat_92052a8adc2054b63e42d1373d145c89}{fsqmat}, and \hyperlink{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9}{ldmat}.\hypertarget{classsqmat_6b79438b5d7544a9c8e110a145355d8f}{
138\index{sqmat@{sqmat}!sqrt\_\-mult@{sqrt\_\-mult}}
[91]139\index{sqrt\_\-mult@{sqrt\_\-mult}!sqmat@{sqmat}}
[172]140\subsubsection[sqrt\_\-mult]{\setlength{\rightskip}{0pt plus 5cm}virtual vec sqmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt  \mbox{[}pure virtual\mbox{]}}}}
141\label{classsqmat_6b79438b5d7544a9c8e110a145355d8f}
[8]142
143
[79]144Multiplies square root of $V$ by vector $x$.
[19]145
146Used e.g. in generating normal samples.
147
[172]148Implemented in \hyperlink{classchmat_b22aa239dbaca33e3fb93b4f674d7051}{chmat}, \hyperlink{classfsqmat_842a774077ee34ac3c36d180ab33e103}{fsqmat}, and \hyperlink{classldmat_fc380626ced6f9244fb58c5f0231174d}{ldmat}.
[22]149
[8]150The documentation for this class was generated from the following file:\begin{CompactItemize}
151\item 
[261]152\hyperlink{libDC_8h}{libDC.h}\end{CompactItemize}
Note: See TracBrowser for help on using the browser.