root/doc/latex/classsqmat.tex @ 271

Revision 271, 8.0 kB (checked in by smidl, 16 years ago)

Next major revision

  • Property svn:eol-style set to native
RevLine 
[172]1\hypertarget{classsqmat}{
[8]2\section{sqmat Class Reference}
3\label{classsqmat}\index{sqmat@{sqmat}}
[172]4}
[8]5{\tt \#include $<$libDC.h$>$}
6
[271]7Inheritance diagram for sqmat::\begin{figure}[H]
[8]8\begin{center}
9\leavevmode
[271]10\includegraphics[height=2cm]{classsqmat}
[8]11\end{center}
12\end{figure}
[270]13
14
15\subsection{Detailed Description}
16Virtual class for representation of double symmetric matrices in square-root form.
17
18All operations defined on this class should be optimized for the chosen decomposition. \subsection*{Public Member Functions}
[8]19\begin{CompactItemize}
20\item 
[172]21virtual void \hyperlink{classsqmat_b223484796661f2dadb5607a86ce0581}{opupdt} (const vec \&v, double w)=0
[8]22\item 
[172]23\hypertarget{classsqmat_cd0ea3701e4493f353499755fba6e07f}{
24virtual mat \hyperlink{classsqmat_cd0ea3701e4493f353499755fba6e07f}{to\_\-mat} () const =0}
25\label{classsqmat_cd0ea3701e4493f353499755fba6e07f}
[8]26
27\begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item 
[172]28virtual void \hyperlink{classsqmat_60fbbfa9e483b8187c135f787ee53afa}{mult\_\-sym} (const mat \&C)=0
[79]29\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \item\end{CompactList}\item 
[172]30virtual void \hyperlink{classsqmat_6909e906da17725b1b80f3cae7cf3325}{mult\_\-sym\_\-t} (const mat \&C)=0
[79]31\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \item\end{CompactList}\item 
[172]32\hypertarget{classsqmat_0a772b396750eeeed85d69fa72478b45}{
33virtual double \hyperlink{classsqmat_0a772b396750eeeed85d69fa72478b45}{logdet} () const =0}
34\label{classsqmat_0a772b396750eeeed85d69fa72478b45}
[8]35
36\begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item 
[172]37virtual vec \hyperlink{classsqmat_6b79438b5d7544a9c8e110a145355d8f}{sqrt\_\-mult} (const vec \&v) const =0
[79]38\begin{CompactList}\small\item\em Multiplies square root of $V$ by vector $x$. \item\end{CompactList}\item 
[172]39\hypertarget{classsqmat_fc026312eb02ba09f85d5aacd6f05ab3}{
40virtual double \hyperlink{classsqmat_fc026312eb02ba09f85d5aacd6f05ab3}{qform} (const vec \&v) const =0}
41\label{classsqmat_fc026312eb02ba09f85d5aacd6f05ab3}
[8]42
[79]43\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*V*v$;. \item\end{CompactList}\item 
[172]44\hypertarget{classsqmat_6230e8e8a9341866aaa0ce008691aac2}{
45virtual double \hyperlink{classsqmat_6230e8e8a9341866aaa0ce008691aac2}{invqform} (const vec \&v) const =0}
46\label{classsqmat_6230e8e8a9341866aaa0ce008691aac2}
[79]47
48\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*inv(V)*v$;. \item\end{CompactList}\item 
[172]49\hypertarget{classsqmat_6fca246f9eabbdeb8cac03030e826b5e}{
50virtual void \hyperlink{classsqmat_6fca246f9eabbdeb8cac03030e826b5e}{clear} ()=0}
51\label{classsqmat_6fca246f9eabbdeb8cac03030e826b5e}
[8]52
53\begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item 
[172]54\hypertarget{classsqmat_ecc2e2540f95a04f4449842588170f5b}{
55int \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols} () const }
56\label{classsqmat_ecc2e2540f95a04f4449842588170f5b}
[8]57
[172]58\begin{CompactList}\small\item\em Reimplementing common functions of mat: \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols()}. \item\end{CompactList}\item 
59\hypertarget{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}{
60int \hyperlink{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}{rows} () const }
61\label{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}
[8]62
[172]63\begin{CompactList}\small\item\em Reimplementing common functions of mat: \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols()}. \item\end{CompactList}\item 
64\hypertarget{classsqmat_0481f2067bb32aaea7e6d4f27e46b656}{
65virtual \hyperlink{classsqmat_0481f2067bb32aaea7e6d4f27e46b656}{$\sim$sqmat} ()}
66\label{classsqmat_0481f2067bb32aaea7e6d4f27e46b656}
[32]67
[33]68\begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item 
[172]69\hypertarget{classsqmat_4268750c040c716b2c05037f725078a2}{
70\hyperlink{classsqmat_4268750c040c716b2c05037f725078a2}{sqmat} (const int dim0)}
71\label{classsqmat_4268750c040c716b2c05037f725078a2}
[33]72
[270]73\begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item 
74\hypertarget{classsqmat_5493a4a11a2b3c41de9cdd8ce305bb44}{
75\hyperlink{classsqmat_5493a4a11a2b3c41de9cdd8ce305bb44}{sqmat} ()}
76\label{classsqmat_5493a4a11a2b3c41de9cdd8ce305bb44}
77
[33]78\begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\end{CompactItemize}
[19]79\subsection*{Protected Attributes}
[8]80\begin{CompactItemize}
81\item 
[172]82\hypertarget{classsqmat_0abed904bdc0882373ba9adba919689d}{
83int \hyperlink{classsqmat_0abed904bdc0882373ba9adba919689d}{dim}}
84\label{classsqmat_0abed904bdc0882373ba9adba919689d}
[8]85
[33]86\begin{CompactList}\small\item\em dimension of the square matrix \item\end{CompactList}\end{CompactItemize}
[8]87
88
89\subsection{Member Function Documentation}
[172]90\hypertarget{classsqmat_b223484796661f2dadb5607a86ce0581}{
[8]91\index{sqmat@{sqmat}!opupdt@{opupdt}}
92\index{opupdt@{opupdt}!sqmat@{sqmat}}
[172]93\subsubsection[opupdt]{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::opupdt (const vec \& {\em v}, \/  double {\em w})\hspace{0.3cm}{\tt  \mbox{[}pure virtual\mbox{]}}}}
94\label{classsqmat_b223484796661f2dadb5607a86ce0581}
[8]95
96
[79]97Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$. \begin{Desc}
[8]98\item[Parameters:]
99\begin{description}
100\item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description}
101\end{Desc}
[22]102BLAS-2b operation.
103
[172]104Implemented in \hyperlink{classchmat_bbc2d98d7455b1f38828907d442836bf}{chmat}, \hyperlink{classfsqmat_b36530e155667fe9f1bd58394e50c65a}{fsqmat}, and \hyperlink{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a}{ldmat}.\hypertarget{classsqmat_60fbbfa9e483b8187c135f787ee53afa}{
105\index{sqmat@{sqmat}!mult\_\-sym@{mult\_\-sym}}
[91]106\index{mult\_\-sym@{mult\_\-sym}!sqmat@{sqmat}}
[172]107\subsubsection[mult\_\-sym]{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt  \mbox{[}pure virtual\mbox{]}}}}
108\label{classsqmat_60fbbfa9e483b8187c135f787ee53afa}
[8]109
110
[79]111Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$.
[8]112
113\begin{Desc}
114\item[Parameters:]
115\begin{description}
[32]116\item[{\em C}]multiplying matrix, \end{description}
[8]117\end{Desc}
[22]118
119
[172]120Implemented in \hyperlink{classchmat_66f509f92b0ccf020e2a2a32566e0777}{chmat}, \hyperlink{classfsqmat_5530d2756b5d991de755e6121c9a452e}{fsqmat}, and \hyperlink{classldmat_e967b9425007f0cb6cd59b845f9756d8}{ldmat}.\hypertarget{classsqmat_6909e906da17725b1b80f3cae7cf3325}{
121\index{sqmat@{sqmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}}
[91]122\index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!sqmat@{sqmat}}
[172]123\subsubsection[mult\_\-sym\_\-t]{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt  \mbox{[}pure virtual\mbox{]}}}}
124\label{classsqmat_6909e906da17725b1b80f3cae7cf3325}
[32]125
126
[79]127Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$.
[32]128
129\begin{Desc}
130\item[Parameters:]
131\begin{description}
132\item[{\em C}]multiplying matrix, \end{description}
133\end{Desc}
134
135
[172]136Implemented in \hyperlink{classchmat_07f50d1332b901eee962e8b1913102f7}{chmat}, \hyperlink{classfsqmat_92052a8adc2054b63e42d1373d145c89}{fsqmat}, and \hyperlink{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9}{ldmat}.\hypertarget{classsqmat_6b79438b5d7544a9c8e110a145355d8f}{
137\index{sqmat@{sqmat}!sqrt\_\-mult@{sqrt\_\-mult}}
[91]138\index{sqrt\_\-mult@{sqrt\_\-mult}!sqmat@{sqmat}}
[172]139\subsubsection[sqrt\_\-mult]{\setlength{\rightskip}{0pt plus 5cm}virtual vec sqmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt  \mbox{[}pure virtual\mbox{]}}}}
140\label{classsqmat_6b79438b5d7544a9c8e110a145355d8f}
[8]141
142
[79]143Multiplies square root of $V$ by vector $x$.
[19]144
145Used e.g. in generating normal samples.
146
[172]147Implemented in \hyperlink{classchmat_b22aa239dbaca33e3fb93b4f674d7051}{chmat}, \hyperlink{classfsqmat_842a774077ee34ac3c36d180ab33e103}{fsqmat}, and \hyperlink{classldmat_fc380626ced6f9244fb58c5f0231174d}{ldmat}.
[22]148
[8]149The documentation for this class was generated from the following file:\begin{CompactItemize}
150\item 
[261]151\hyperlink{libDC_8h}{libDC.h}\end{CompactItemize}
Note: See TracBrowser for help on using the browser.