[8] | 1 | \section{sqmat Class Reference} |
---|
| 2 | \label{classsqmat}\index{sqmat@{sqmat}} |
---|
| 3 | Virtual class for representation of double symmetric matrices in square-root form. |
---|
| 4 | |
---|
| 5 | |
---|
| 6 | {\tt \#include $<$libDC.h$>$} |
---|
| 7 | |
---|
[19] | 8 | Inheritance diagram for sqmat:\nopagebreak |
---|
| 9 | \begin{figure}[H] |
---|
[8] | 10 | \begin{center} |
---|
| 11 | \leavevmode |
---|
[19] | 12 | \includegraphics[width=78pt]{classsqmat__inherit__graph} |
---|
[8] | 13 | \end{center} |
---|
| 14 | \end{figure} |
---|
| 15 | \subsection*{Public Member Functions} |
---|
| 16 | \begin{CompactItemize} |
---|
| 17 | \item |
---|
| 18 | virtual void {\bf opupdt} (const vec \&v, double w)=0 |
---|
| 19 | \item |
---|
| 20 | virtual mat {\bf to\_\-mat} ()=0\label{classsqmat_9a5b6fddfeb42339e1dc9b978a2590fc} |
---|
| 21 | |
---|
| 22 | \begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item |
---|
[32] | 23 | virtual void {\bf mult\_\-sym} (const mat \&C)=0 |
---|
[8] | 24 | \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. \item\end{CompactList}\item |
---|
[32] | 25 | virtual void {\bf mult\_\-sym\_\-t} (const mat \&C)=0 |
---|
| 26 | \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$. \item\end{CompactList}\item |
---|
| 27 | virtual double {\bf logdet} () const =0\label{classsqmat_0a772b396750eeeed85d69fa72478b45} |
---|
[8] | 28 | |
---|
| 29 | \begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item |
---|
[33] | 30 | virtual vec {\bf sqrt\_\-mult} (const vec \&v) const =0 |
---|
[19] | 31 | \begin{CompactList}\small\item\em Multiplies square root of \$V\$ by vector \$x\$. \item\end{CompactList}\item |
---|
[33] | 32 | virtual double {\bf qform} (const vec \&v) const =0\label{classsqmat_fc026312eb02ba09f85d5aacd6f05ab3} |
---|
[8] | 33 | |
---|
| 34 | \begin{CompactList}\small\item\em Evaluates quadratic form \$x= v'$\ast$V$\ast$v\$;. \item\end{CompactList}\item |
---|
| 35 | virtual void {\bf clear} ()=0\label{classsqmat_6fca246f9eabbdeb8cac03030e826b5e} |
---|
| 36 | |
---|
| 37 | \begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item |
---|
[22] | 38 | int {\bf cols} () const \label{classsqmat_ecc2e2540f95a04f4449842588170f5b} |
---|
[8] | 39 | |
---|
[22] | 40 | \begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\item |
---|
| 41 | int {\bf rows} () const \label{classsqmat_071e80ced9cc3b8cbb360fa7462eb646} |
---|
[8] | 42 | |
---|
[32] | 43 | \begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\item |
---|
| 44 | virtual {\bf $\sim$sqmat} ()\label{classsqmat_0481f2067bb32aaea7e6d4f27e46b656} |
---|
| 45 | |
---|
[33] | 46 | \begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item |
---|
| 47 | {\bf sqmat} (const int dim0)\label{classsqmat_4268750c040c716b2c05037f725078a2} |
---|
| 48 | |
---|
| 49 | \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\end{CompactItemize} |
---|
[19] | 50 | \subsection*{Protected Attributes} |
---|
[8] | 51 | \begin{CompactItemize} |
---|
| 52 | \item |
---|
[33] | 53 | int {\bf dim}\label{classsqmat_0abed904bdc0882373ba9adba919689d} |
---|
[8] | 54 | |
---|
[33] | 55 | \begin{CompactList}\small\item\em dimension of the square matrix \item\end{CompactList}\end{CompactItemize} |
---|
[8] | 56 | |
---|
| 57 | |
---|
| 58 | \subsection{Detailed Description} |
---|
| 59 | Virtual class for representation of double symmetric matrices in square-root form. |
---|
| 60 | |
---|
| 61 | All operations defined on this class should be optimized for the chosed decomposition. |
---|
| 62 | |
---|
| 63 | \subsection{Member Function Documentation} |
---|
| 64 | \index{sqmat@{sqmat}!opupdt@{opupdt}} |
---|
| 65 | \index{opupdt@{opupdt}!sqmat@{sqmat}} |
---|
| 66 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::opupdt (const vec \& {\em v}, double {\em w})\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_b223484796661f2dadb5607a86ce0581} |
---|
| 67 | |
---|
| 68 | |
---|
| 69 | Perfroms a rank-1 update by outer product of vectors: \$V = V + w v v'\$. \begin{Desc} |
---|
| 70 | \item[Parameters:] |
---|
| 71 | \begin{description} |
---|
| 72 | \item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description} |
---|
| 73 | \end{Desc} |
---|
[22] | 74 | BLAS-2b operation. |
---|
| 75 | |
---|
[33] | 76 | Implemented in {\bf fsqmat} \doxyref{}{p.}{classfsqmat_b36530e155667fe9f1bd58394e50c65a}, and {\bf ldmat} \doxyref{}{p.}{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a}.\index{sqmat@{sqmat}!mult_sym@{mult\_\-sym}} |
---|
[8] | 77 | \index{mult_sym@{mult\_\-sym}!sqmat@{sqmat}} |
---|
[32] | 78 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_60fbbfa9e483b8187c135f787ee53afa} |
---|
[8] | 79 | |
---|
| 80 | |
---|
| 81 | Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. |
---|
| 82 | |
---|
| 83 | \begin{Desc} |
---|
| 84 | \item[Parameters:] |
---|
| 85 | \begin{description} |
---|
[32] | 86 | \item[{\em C}]multiplying matrix, \end{description} |
---|
[8] | 87 | \end{Desc} |
---|
[22] | 88 | |
---|
| 89 | |
---|
[33] | 90 | Implemented in {\bf fsqmat} \doxyref{}{p.}{classfsqmat_5530d2756b5d991de755e6121c9a452e}, and {\bf ldmat} \doxyref{}{p.}{classldmat_e967b9425007f0cb6cd59b845f9756d8}.\index{sqmat@{sqmat}!mult_sym_t@{mult\_\-sym\_\-t}} |
---|
[32] | 91 | \index{mult_sym_t@{mult\_\-sym\_\-t}!sqmat@{sqmat}} |
---|
| 92 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_6909e906da17725b1b80f3cae7cf3325} |
---|
| 93 | |
---|
| 94 | |
---|
| 95 | Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$. |
---|
| 96 | |
---|
| 97 | \begin{Desc} |
---|
| 98 | \item[Parameters:] |
---|
| 99 | \begin{description} |
---|
| 100 | \item[{\em C}]multiplying matrix, \end{description} |
---|
| 101 | \end{Desc} |
---|
| 102 | |
---|
| 103 | |
---|
[33] | 104 | Implemented in {\bf fsqmat} \doxyref{}{p.}{classfsqmat_92052a8adc2054b63e42d1373d145c89}, and {\bf ldmat} \doxyref{}{p.}{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9}.\index{sqmat@{sqmat}!sqrt_mult@{sqrt\_\-mult}} |
---|
[19] | 105 | \index{sqrt_mult@{sqrt\_\-mult}!sqmat@{sqmat}} |
---|
[33] | 106 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual vec sqmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_6b79438b5d7544a9c8e110a145355d8f} |
---|
[8] | 107 | |
---|
| 108 | |
---|
[19] | 109 | Multiplies square root of \$V\$ by vector \$x\$. |
---|
| 110 | |
---|
| 111 | Used e.g. in generating normal samples. |
---|
| 112 | |
---|
[33] | 113 | Implemented in {\bf fsqmat} \doxyref{}{p.}{classfsqmat_842a774077ee34ac3c36d180ab33e103}, and {\bf ldmat} \doxyref{}{p.}{classldmat_fc380626ced6f9244fb58c5f0231174d}. |
---|
[22] | 114 | |
---|
[8] | 115 | The documentation for this class was generated from the following file:\begin{CompactItemize} |
---|
| 116 | \item |
---|
[19] | 117 | work/mixpp/bdm/math/{\bf libDC.h}\end{CompactItemize} |
---|