1 | \section{sqmat Class Reference} |
---|
2 | \label{classsqmat}\index{sqmat@{sqmat}} |
---|
3 | Virtual class for representation of double symmetric matrices in square-root form. |
---|
4 | |
---|
5 | |
---|
6 | {\tt \#include $<$libDC.h$>$} |
---|
7 | |
---|
8 | Inheritance diagram for sqmat::\begin{figure}[H] |
---|
9 | \begin{center} |
---|
10 | \leavevmode |
---|
11 | \includegraphics[height=2cm]{classsqmat} |
---|
12 | \end{center} |
---|
13 | \end{figure} |
---|
14 | \subsection*{Public Member Functions} |
---|
15 | \begin{CompactItemize} |
---|
16 | \item |
---|
17 | virtual void {\bf opupdt} (const vec \&v, double w)=0 |
---|
18 | \item |
---|
19 | virtual mat {\bf to\_\-mat} ()=0\label{classsqmat_9a5b6fddfeb42339e1dc9b978a2590fc} |
---|
20 | |
---|
21 | \begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item |
---|
22 | virtual void {\bf mult\_\-sym} (const mat \&C, bool trans=true)=0 |
---|
23 | \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. \item\end{CompactList}\item |
---|
24 | virtual double {\bf logdet} ()=0\label{classsqmat_5c852819589f74cdaefbd648c0ce8547} |
---|
25 | |
---|
26 | \begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item |
---|
27 | virtual double {\bf qform} (vec \&v)=0\label{classsqmat_44e079468bc8bfccf634dc85b32ba6be} |
---|
28 | |
---|
29 | \begin{CompactList}\small\item\em Evaluates quadratic form \$x= v'$\ast$V$\ast$v\$;. \item\end{CompactList}\item |
---|
30 | virtual void {\bf clear} ()=0\label{classsqmat_6fca246f9eabbdeb8cac03030e826b5e} |
---|
31 | |
---|
32 | \begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item |
---|
33 | virtual int {\bf cols} ()=0\label{classsqmat_743d3799d9e73403230c54e14ecf09ed} |
---|
34 | |
---|
35 | \begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_743d3799d9e73403230c54e14ecf09ed}. \item\end{CompactList}\item |
---|
36 | virtual int {\bf rows} ()=0\label{classsqmat_f59664a4be09450f8c6ce3f5e5ab2dc7} |
---|
37 | |
---|
38 | \begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_743d3799d9e73403230c54e14ecf09ed}. \item\end{CompactList}\end{CompactItemize} |
---|
39 | \subsection*{Friends} |
---|
40 | \begin{CompactItemize} |
---|
41 | \item |
---|
42 | std::ostream \& \textbf{operator$<$$<$} (std::ostream \&os, {\bf sqmat} \&sq)\label{classsqmat_c9eb5aa871432ddb9c5a45ddbbb19eab} |
---|
43 | |
---|
44 | \end{CompactItemize} |
---|
45 | |
---|
46 | |
---|
47 | \subsection{Detailed Description} |
---|
48 | Virtual class for representation of double symmetric matrices in square-root form. |
---|
49 | |
---|
50 | All operations defined on this class should be optimized for the chosed decomposition. |
---|
51 | |
---|
52 | \subsection{Member Function Documentation} |
---|
53 | \index{sqmat@{sqmat}!opupdt@{opupdt}} |
---|
54 | \index{opupdt@{opupdt}!sqmat@{sqmat}} |
---|
55 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::opupdt (const vec \& {\em v}, double {\em w})\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_b223484796661f2dadb5607a86ce0581} |
---|
56 | |
---|
57 | |
---|
58 | Perfroms a rank-1 update by outer product of vectors: \$V = V + w v v'\$. \begin{Desc} |
---|
59 | \item[Parameters:] |
---|
60 | \begin{description} |
---|
61 | \item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description} |
---|
62 | \end{Desc} |
---|
63 | BLAS-2b operation. \index{sqmat@{sqmat}!mult_sym@{mult\_\-sym}} |
---|
64 | \index{mult_sym@{mult\_\-sym}!sqmat@{sqmat}} |
---|
65 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym (const mat \& {\em C}, bool {\em trans} = {\tt true})\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_faa3bc90be142adde9cf74f573c70157} |
---|
66 | |
---|
67 | |
---|
68 | Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. |
---|
69 | |
---|
70 | \begin{Desc} |
---|
71 | \item[Parameters:] |
---|
72 | \begin{description} |
---|
73 | \item[{\em C}]multiplying matrix, \item[{\em trans}]if true, product \$V = C'$\ast$V$\ast$C\$ will be computed instead; \end{description} |
---|
74 | \end{Desc} |
---|
75 | |
---|
76 | |
---|
77 | The documentation for this class was generated from the following file:\begin{CompactItemize} |
---|
78 | \item |
---|
79 | work/mixpp/{\bf libDC.h}\end{CompactItemize} |
---|