\section{sqmat Class Reference} \label{classsqmat}\index{sqmat@{sqmat}} Virtual class for representation of double symmetric matrices in square-root form. {\tt \#include $<$libDC.h$>$} Inheritance diagram for sqmat:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[width=78pt]{classsqmat__inherit__graph} \end{center} \end{figure} \subsection*{Public Member Functions} \begin{CompactItemize} \item virtual void {\bf opupdt} (const vec \&v, double w)=0 \item virtual mat {\bf to\_\-mat} ()=0\label{classsqmat_9a5b6fddfeb42339e1dc9b978a2590fc} \begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item virtual void {\bf mult\_\-sym} (const mat \&C)=0 \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. \item\end{CompactList}\item virtual void {\bf mult\_\-sym\_\-t} (const mat \&C)=0 \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$. \item\end{CompactList}\item virtual double {\bf logdet} () const =0\label{classsqmat_0a772b396750eeeed85d69fa72478b45} \begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item virtual vec {\bf sqrt\_\-mult} (const vec \&v) const =0 \begin{CompactList}\small\item\em Multiplies square root of \$V\$ by vector \$x\$. \item\end{CompactList}\item virtual double {\bf qform} (const vec \&v) const =0\label{classsqmat_fc026312eb02ba09f85d5aacd6f05ab3} \begin{CompactList}\small\item\em Evaluates quadratic form \$x= v'$\ast$V$\ast$v\$;. \item\end{CompactList}\item virtual void {\bf clear} ()=0\label{classsqmat_6fca246f9eabbdeb8cac03030e826b5e} \begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item int {\bf cols} () const \label{classsqmat_ecc2e2540f95a04f4449842588170f5b} \begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\item int {\bf rows} () const \label{classsqmat_071e80ced9cc3b8cbb360fa7462eb646} \begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\item virtual {\bf $\sim$sqmat} ()\label{classsqmat_0481f2067bb32aaea7e6d4f27e46b656} \begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item {\bf sqmat} (const int dim0)\label{classsqmat_4268750c040c716b2c05037f725078a2} \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\end{CompactItemize} \subsection*{Protected Attributes} \begin{CompactItemize} \item int {\bf dim}\label{classsqmat_0abed904bdc0882373ba9adba919689d} \begin{CompactList}\small\item\em dimension of the square matrix \item\end{CompactList}\end{CompactItemize} \subsection{Detailed Description} Virtual class for representation of double symmetric matrices in square-root form. All operations defined on this class should be optimized for the chosed decomposition. \subsection{Member Function Documentation} \index{sqmat@{sqmat}!opupdt@{opupdt}} \index{opupdt@{opupdt}!sqmat@{sqmat}} \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::opupdt (const vec \& {\em v}, double {\em w})\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_b223484796661f2dadb5607a86ce0581} Perfroms a rank-1 update by outer product of vectors: \$V = V + w v v'\$. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description} \end{Desc} BLAS-2b operation. Implemented in {\bf fsqmat} \doxyref{}{p.}{classfsqmat_b36530e155667fe9f1bd58394e50c65a}, and {\bf ldmat} \doxyref{}{p.}{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a}.\index{sqmat@{sqmat}!mult_sym@{mult\_\-sym}} \index{mult_sym@{mult\_\-sym}!sqmat@{sqmat}} \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_60fbbfa9e483b8187c135f787ee53afa} Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em C}]multiplying matrix, \end{description} \end{Desc} Implemented in {\bf fsqmat} \doxyref{}{p.}{classfsqmat_5530d2756b5d991de755e6121c9a452e}, and {\bf ldmat} \doxyref{}{p.}{classldmat_e967b9425007f0cb6cd59b845f9756d8}.\index{sqmat@{sqmat}!mult_sym_t@{mult\_\-sym\_\-t}} \index{mult_sym_t@{mult\_\-sym\_\-t}!sqmat@{sqmat}} \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_6909e906da17725b1b80f3cae7cf3325} Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$. \begin{Desc} \item[Parameters:] \begin{description} \item[{\em C}]multiplying matrix, \end{description} \end{Desc} Implemented in {\bf fsqmat} \doxyref{}{p.}{classfsqmat_92052a8adc2054b63e42d1373d145c89}, and {\bf ldmat} \doxyref{}{p.}{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9}.\index{sqmat@{sqmat}!sqrt_mult@{sqrt\_\-mult}} \index{sqrt_mult@{sqrt\_\-mult}!sqmat@{sqmat}} \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual vec sqmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_6b79438b5d7544a9c8e110a145355d8f} Multiplies square root of \$V\$ by vector \$x\$. Used e.g. in generating normal samples. Implemented in {\bf fsqmat} \doxyref{}{p.}{classfsqmat_842a774077ee34ac3c36d180ab33e103}, and {\bf ldmat} \doxyref{}{p.}{classldmat_fc380626ced6f9244fb58c5f0231174d}. The documentation for this class was generated from the following file:\begin{CompactItemize} \item work/mixpp/bdm/math/{\bf libDC.h}\end{CompactItemize}