1 | \hypertarget{classsqmat}{ |
---|
2 | \section{sqmat Class Reference} |
---|
3 | \label{classsqmat}\index{sqmat@{sqmat}} |
---|
4 | } |
---|
5 | {\tt \#include $<$libDC.h$>$} |
---|
6 | |
---|
7 | Inheritance diagram for sqmat:\nopagebreak |
---|
8 | \begin{figure}[H] |
---|
9 | \begin{center} |
---|
10 | \leavevmode |
---|
11 | \includegraphics[width=110pt]{classsqmat__inherit__graph} |
---|
12 | \end{center} |
---|
13 | \end{figure} |
---|
14 | |
---|
15 | |
---|
16 | \subsection{Detailed Description} |
---|
17 | Virtual class for representation of double symmetric matrices in square-root form. |
---|
18 | |
---|
19 | All operations defined on this class should be optimized for the chosen decomposition. \subsection*{Public Member Functions} |
---|
20 | \begin{CompactItemize} |
---|
21 | \item |
---|
22 | virtual void \hyperlink{classsqmat_b223484796661f2dadb5607a86ce0581}{opupdt} (const vec \&v, double w)=0 |
---|
23 | \item |
---|
24 | \hypertarget{classsqmat_cd0ea3701e4493f353499755fba6e07f}{ |
---|
25 | virtual mat \hyperlink{classsqmat_cd0ea3701e4493f353499755fba6e07f}{to\_\-mat} () const =0} |
---|
26 | \label{classsqmat_cd0ea3701e4493f353499755fba6e07f} |
---|
27 | |
---|
28 | \begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item |
---|
29 | virtual void \hyperlink{classsqmat_60fbbfa9e483b8187c135f787ee53afa}{mult\_\-sym} (const mat \&C)=0 |
---|
30 | \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \item\end{CompactList}\item |
---|
31 | virtual void \hyperlink{classsqmat_6909e906da17725b1b80f3cae7cf3325}{mult\_\-sym\_\-t} (const mat \&C)=0 |
---|
32 | \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \item\end{CompactList}\item |
---|
33 | \hypertarget{classsqmat_0a772b396750eeeed85d69fa72478b45}{ |
---|
34 | virtual double \hyperlink{classsqmat_0a772b396750eeeed85d69fa72478b45}{logdet} () const =0} |
---|
35 | \label{classsqmat_0a772b396750eeeed85d69fa72478b45} |
---|
36 | |
---|
37 | \begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item |
---|
38 | virtual vec \hyperlink{classsqmat_6b79438b5d7544a9c8e110a145355d8f}{sqrt\_\-mult} (const vec \&v) const =0 |
---|
39 | \begin{CompactList}\small\item\em Multiplies square root of $V$ by vector $x$. \item\end{CompactList}\item |
---|
40 | \hypertarget{classsqmat_fc026312eb02ba09f85d5aacd6f05ab3}{ |
---|
41 | virtual double \hyperlink{classsqmat_fc026312eb02ba09f85d5aacd6f05ab3}{qform} (const vec \&v) const =0} |
---|
42 | \label{classsqmat_fc026312eb02ba09f85d5aacd6f05ab3} |
---|
43 | |
---|
44 | \begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*V*v$;. \item\end{CompactList}\item |
---|
45 | \hypertarget{classsqmat_6230e8e8a9341866aaa0ce008691aac2}{ |
---|
46 | virtual double \hyperlink{classsqmat_6230e8e8a9341866aaa0ce008691aac2}{invqform} (const vec \&v) const =0} |
---|
47 | \label{classsqmat_6230e8e8a9341866aaa0ce008691aac2} |
---|
48 | |
---|
49 | \begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*inv(V)*v$;. \item\end{CompactList}\item |
---|
50 | \hypertarget{classsqmat_6fca246f9eabbdeb8cac03030e826b5e}{ |
---|
51 | virtual void \hyperlink{classsqmat_6fca246f9eabbdeb8cac03030e826b5e}{clear} ()=0} |
---|
52 | \label{classsqmat_6fca246f9eabbdeb8cac03030e826b5e} |
---|
53 | |
---|
54 | \begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item |
---|
55 | \hypertarget{classsqmat_ecc2e2540f95a04f4449842588170f5b}{ |
---|
56 | int \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols} () const } |
---|
57 | \label{classsqmat_ecc2e2540f95a04f4449842588170f5b} |
---|
58 | |
---|
59 | \begin{CompactList}\small\item\em Reimplementing common functions of mat: \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols()}. \item\end{CompactList}\item |
---|
60 | \hypertarget{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}{ |
---|
61 | int \hyperlink{classsqmat_071e80ced9cc3b8cbb360fa7462eb646}{rows} () const } |
---|
62 | \label{classsqmat_071e80ced9cc3b8cbb360fa7462eb646} |
---|
63 | |
---|
64 | \begin{CompactList}\small\item\em Reimplementing common functions of mat: \hyperlink{classsqmat_ecc2e2540f95a04f4449842588170f5b}{cols()}. \item\end{CompactList}\item |
---|
65 | \hypertarget{classsqmat_0481f2067bb32aaea7e6d4f27e46b656}{ |
---|
66 | virtual \hyperlink{classsqmat_0481f2067bb32aaea7e6d4f27e46b656}{$\sim$sqmat} ()} |
---|
67 | \label{classsqmat_0481f2067bb32aaea7e6d4f27e46b656} |
---|
68 | |
---|
69 | \begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item |
---|
70 | \hypertarget{classsqmat_4268750c040c716b2c05037f725078a2}{ |
---|
71 | \hyperlink{classsqmat_4268750c040c716b2c05037f725078a2}{sqmat} (const int dim0)} |
---|
72 | \label{classsqmat_4268750c040c716b2c05037f725078a2} |
---|
73 | |
---|
74 | \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item |
---|
75 | \hypertarget{classsqmat_5493a4a11a2b3c41de9cdd8ce305bb44}{ |
---|
76 | \hyperlink{classsqmat_5493a4a11a2b3c41de9cdd8ce305bb44}{sqmat} ()} |
---|
77 | \label{classsqmat_5493a4a11a2b3c41de9cdd8ce305bb44} |
---|
78 | |
---|
79 | \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\end{CompactItemize} |
---|
80 | \subsection*{Protected Attributes} |
---|
81 | \begin{CompactItemize} |
---|
82 | \item |
---|
83 | \hypertarget{classsqmat_0abed904bdc0882373ba9adba919689d}{ |
---|
84 | int \hyperlink{classsqmat_0abed904bdc0882373ba9adba919689d}{dim}} |
---|
85 | \label{classsqmat_0abed904bdc0882373ba9adba919689d} |
---|
86 | |
---|
87 | \begin{CompactList}\small\item\em dimension of the square matrix \item\end{CompactList}\end{CompactItemize} |
---|
88 | |
---|
89 | |
---|
90 | \subsection{Member Function Documentation} |
---|
91 | \hypertarget{classsqmat_b223484796661f2dadb5607a86ce0581}{ |
---|
92 | \index{sqmat@{sqmat}!opupdt@{opupdt}} |
---|
93 | \index{opupdt@{opupdt}!sqmat@{sqmat}} |
---|
94 | \subsubsection[opupdt]{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::opupdt (const vec \& {\em v}, \/ double {\em w})\hspace{0.3cm}{\tt \mbox{[}pure virtual\mbox{]}}}} |
---|
95 | \label{classsqmat_b223484796661f2dadb5607a86ce0581} |
---|
96 | |
---|
97 | |
---|
98 | Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$. \begin{Desc} |
---|
99 | \item[Parameters:] |
---|
100 | \begin{description} |
---|
101 | \item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description} |
---|
102 | \end{Desc} |
---|
103 | BLAS-2b operation. |
---|
104 | |
---|
105 | Implemented in \hyperlink{classchmat_bbc2d98d7455b1f38828907d442836bf}{chmat}, \hyperlink{classfsqmat_b36530e155667fe9f1bd58394e50c65a}{fsqmat}, and \hyperlink{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a}{ldmat}.\hypertarget{classsqmat_60fbbfa9e483b8187c135f787ee53afa}{ |
---|
106 | \index{sqmat@{sqmat}!mult\_\-sym@{mult\_\-sym}} |
---|
107 | \index{mult\_\-sym@{mult\_\-sym}!sqmat@{sqmat}} |
---|
108 | \subsubsection[mult\_\-sym]{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt \mbox{[}pure virtual\mbox{]}}}} |
---|
109 | \label{classsqmat_60fbbfa9e483b8187c135f787ee53afa} |
---|
110 | |
---|
111 | |
---|
112 | Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. |
---|
113 | |
---|
114 | \begin{Desc} |
---|
115 | \item[Parameters:] |
---|
116 | \begin{description} |
---|
117 | \item[{\em C}]multiplying matrix, \end{description} |
---|
118 | \end{Desc} |
---|
119 | |
---|
120 | |
---|
121 | Implemented in \hyperlink{classchmat_66f509f92b0ccf020e2a2a32566e0777}{chmat}, \hyperlink{classfsqmat_5530d2756b5d991de755e6121c9a452e}{fsqmat}, and \hyperlink{classldmat_e967b9425007f0cb6cd59b845f9756d8}{ldmat}.\hypertarget{classsqmat_6909e906da17725b1b80f3cae7cf3325}{ |
---|
122 | \index{sqmat@{sqmat}!mult\_\-sym\_\-t@{mult\_\-sym\_\-t}} |
---|
123 | \index{mult\_\-sym\_\-t@{mult\_\-sym\_\-t}!sqmat@{sqmat}} |
---|
124 | \subsubsection[mult\_\-sym\_\-t]{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt \mbox{[}pure virtual\mbox{]}}}} |
---|
125 | \label{classsqmat_6909e906da17725b1b80f3cae7cf3325} |
---|
126 | |
---|
127 | |
---|
128 | Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. |
---|
129 | |
---|
130 | \begin{Desc} |
---|
131 | \item[Parameters:] |
---|
132 | \begin{description} |
---|
133 | \item[{\em C}]multiplying matrix, \end{description} |
---|
134 | \end{Desc} |
---|
135 | |
---|
136 | |
---|
137 | Implemented in \hyperlink{classchmat_07f50d1332b901eee962e8b1913102f7}{chmat}, \hyperlink{classfsqmat_92052a8adc2054b63e42d1373d145c89}{fsqmat}, and \hyperlink{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9}{ldmat}.\hypertarget{classsqmat_6b79438b5d7544a9c8e110a145355d8f}{ |
---|
138 | \index{sqmat@{sqmat}!sqrt\_\-mult@{sqrt\_\-mult}} |
---|
139 | \index{sqrt\_\-mult@{sqrt\_\-mult}!sqmat@{sqmat}} |
---|
140 | \subsubsection[sqrt\_\-mult]{\setlength{\rightskip}{0pt plus 5cm}virtual vec sqmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt \mbox{[}pure virtual\mbox{]}}}} |
---|
141 | \label{classsqmat_6b79438b5d7544a9c8e110a145355d8f} |
---|
142 | |
---|
143 | |
---|
144 | Multiplies square root of $V$ by vector $x$. |
---|
145 | |
---|
146 | Used e.g. in generating normal samples. |
---|
147 | |
---|
148 | Implemented in \hyperlink{classchmat_b22aa239dbaca33e3fb93b4f674d7051}{chmat}, \hyperlink{classfsqmat_842a774077ee34ac3c36d180ab33e103}{fsqmat}, and \hyperlink{classldmat_fc380626ced6f9244fb58c5f0231174d}{ldmat}. |
---|
149 | |
---|
150 | The documentation for this class was generated from the following file:\begin{CompactItemize} |
---|
151 | \item |
---|
152 | \hyperlink{libDC_8h}{libDC.h}\end{CompactItemize} |
---|