| 1 | \section{sqmat Class Reference} | 
|---|
| 2 | \label{classsqmat}\index{sqmat@{sqmat}} | 
|---|
| 3 | Virtual class for representation of double symmetric matrices in square-root form.   | 
|---|
| 4 |  | 
|---|
| 5 |  | 
|---|
| 6 | {\tt \#include $<$libDC.h$>$} | 
|---|
| 7 |  | 
|---|
| 8 | Inheritance diagram for sqmat:\nopagebreak | 
|---|
| 9 | \begin{figure}[H] | 
|---|
| 10 | \begin{center} | 
|---|
| 11 | \leavevmode | 
|---|
| 12 | \includegraphics[width=110pt]{classsqmat__inherit__graph} | 
|---|
| 13 | \end{center} | 
|---|
| 14 | \end{figure} | 
|---|
| 15 | \subsection*{Public Member Functions} | 
|---|
| 16 | \begin{CompactItemize} | 
|---|
| 17 | \item  | 
|---|
| 18 | virtual void {\bf opupdt} (const vec \&v, double w)=0 | 
|---|
| 19 | \item  | 
|---|
| 20 | virtual mat {\bf to\_\-mat} ()=0\label{classsqmat_9a5b6fddfeb42339e1dc9b978a2590fc} | 
|---|
| 21 |  | 
|---|
| 22 | \begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item  | 
|---|
| 23 | virtual void {\bf mult\_\-sym} (const mat \&C)=0 | 
|---|
| 24 | \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \item\end{CompactList}\item  | 
|---|
| 25 | virtual void {\bf mult\_\-sym\_\-t} (const mat \&C)=0 | 
|---|
| 26 | \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \item\end{CompactList}\item  | 
|---|
| 27 | virtual double {\bf logdet} () const =0\label{classsqmat_0a772b396750eeeed85d69fa72478b45} | 
|---|
| 28 |  | 
|---|
| 29 | \begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item  | 
|---|
| 30 | virtual vec {\bf sqrt\_\-mult} (const vec \&v) const =0 | 
|---|
| 31 | \begin{CompactList}\small\item\em Multiplies square root of $V$ by vector $x$. \item\end{CompactList}\item  | 
|---|
| 32 | virtual double {\bf qform} (const vec \&v) const =0\label{classsqmat_fc026312eb02ba09f85d5aacd6f05ab3} | 
|---|
| 33 |  | 
|---|
| 34 | \begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*V*v$;. \item\end{CompactList}\item  | 
|---|
| 35 | virtual double {\bf invqform} (const vec \&v) const =0\label{classsqmat_6230e8e8a9341866aaa0ce008691aac2} | 
|---|
| 36 |  | 
|---|
| 37 | \begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*inv(V)*v$;. \item\end{CompactList}\item  | 
|---|
| 38 | virtual void {\bf clear} ()=0\label{classsqmat_6fca246f9eabbdeb8cac03030e826b5e} | 
|---|
| 39 |  | 
|---|
| 40 | \begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item  | 
|---|
| 41 | int {\bf cols} () const \label{classsqmat_ecc2e2540f95a04f4449842588170f5b} | 
|---|
| 42 |  | 
|---|
| 43 | \begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\item  | 
|---|
| 44 | int {\bf rows} () const \label{classsqmat_071e80ced9cc3b8cbb360fa7462eb646} | 
|---|
| 45 |  | 
|---|
| 46 | \begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\item  | 
|---|
| 47 | virtual {\bf $\sim$sqmat} ()\label{classsqmat_0481f2067bb32aaea7e6d4f27e46b656} | 
|---|
| 48 |  | 
|---|
| 49 | \begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item  | 
|---|
| 50 | {\bf sqmat} (const int dim0)\label{classsqmat_4268750c040c716b2c05037f725078a2} | 
|---|
| 51 |  | 
|---|
| 52 | \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\end{CompactItemize} | 
|---|
| 53 | \subsection*{Protected Attributes} | 
|---|
| 54 | \begin{CompactItemize} | 
|---|
| 55 | \item  | 
|---|
| 56 | int {\bf dim}\label{classsqmat_0abed904bdc0882373ba9adba919689d} | 
|---|
| 57 |  | 
|---|
| 58 | \begin{CompactList}\small\item\em dimension of the square matrix \item\end{CompactList}\end{CompactItemize} | 
|---|
| 59 |  | 
|---|
| 60 |  | 
|---|
| 61 | \subsection{Detailed Description} | 
|---|
| 62 | Virtual class for representation of double symmetric matrices in square-root form.  | 
|---|
| 63 |  | 
|---|
| 64 | All operations defined on this class should be optimized for the chosen decomposition.  | 
|---|
| 65 |  | 
|---|
| 66 | \subsection{Member Function Documentation} | 
|---|
| 67 | \index{sqmat@{sqmat}!opupdt@{opupdt}} | 
|---|
| 68 | \index{opupdt@{opupdt}!sqmat@{sqmat}} | 
|---|
| 69 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::opupdt (const vec \& {\em v}, double {\em w})\hspace{0.3cm}{\tt  [pure virtual]}}\label{classsqmat_b223484796661f2dadb5607a86ce0581} | 
|---|
| 70 |  | 
|---|
| 71 |  | 
|---|
| 72 | Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$. \begin{Desc} | 
|---|
| 73 | \item[Parameters:] | 
|---|
| 74 | \begin{description} | 
|---|
| 75 | \item[{\em v}]Vector forming the outer product to be added \item[{\em w}]weight of updating; can be negative\end{description} | 
|---|
| 76 | \end{Desc} | 
|---|
| 77 | BLAS-2b operation.  | 
|---|
| 78 |  | 
|---|
| 79 | Implemented in {\bf chmat} \doxyref{}{p.}{classchmat_bbc2d98d7455b1f38828907d442836bf}, {\bf fsqmat} \doxyref{}{p.}{classfsqmat_b36530e155667fe9f1bd58394e50c65a}, and {\bf ldmat} \doxyref{}{p.}{classldmat_0f0f6e083e6d947cf58097ffce3ccd1a}.\index{sqmat@{sqmat}!mult_sym@{mult\_\-sym}} | 
|---|
| 80 | \index{mult_sym@{mult\_\-sym}!sqmat@{sqmat}} | 
|---|
| 81 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt  [pure virtual]}}\label{classsqmat_60fbbfa9e483b8187c135f787ee53afa} | 
|---|
| 82 |  | 
|---|
| 83 |  | 
|---|
| 84 | Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$.  | 
|---|
| 85 |  | 
|---|
| 86 | \begin{Desc} | 
|---|
| 87 | \item[Parameters:] | 
|---|
| 88 | \begin{description} | 
|---|
| 89 | \item[{\em C}]multiplying matrix, \end{description} | 
|---|
| 90 | \end{Desc} | 
|---|
| 91 |  | 
|---|
| 92 |  | 
|---|
| 93 | Implemented in {\bf chmat} \doxyref{}{p.}{classchmat_66f509f92b0ccf020e2a2a32566e0777}, {\bf fsqmat} \doxyref{}{p.}{classfsqmat_5530d2756b5d991de755e6121c9a452e}, and {\bf ldmat} \doxyref{}{p.}{classldmat_e967b9425007f0cb6cd59b845f9756d8}.\index{sqmat@{sqmat}!mult_sym_t@{mult\_\-sym\_\-t}} | 
|---|
| 94 | \index{mult_sym_t@{mult\_\-sym\_\-t}!sqmat@{sqmat}} | 
|---|
| 95 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt  [pure virtual]}}\label{classsqmat_6909e906da17725b1b80f3cae7cf3325} | 
|---|
| 96 |  | 
|---|
| 97 |  | 
|---|
| 98 | Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$.  | 
|---|
| 99 |  | 
|---|
| 100 | \begin{Desc} | 
|---|
| 101 | \item[Parameters:] | 
|---|
| 102 | \begin{description} | 
|---|
| 103 | \item[{\em C}]multiplying matrix, \end{description} | 
|---|
| 104 | \end{Desc} | 
|---|
| 105 |  | 
|---|
| 106 |  | 
|---|
| 107 | Implemented in {\bf chmat} \doxyref{}{p.}{classchmat_07f50d1332b901eee962e8b1913102f7}, {\bf fsqmat} \doxyref{}{p.}{classfsqmat_92052a8adc2054b63e42d1373d145c89}, and {\bf ldmat} \doxyref{}{p.}{classldmat_4fd155f38eb6dd5af4bdf9c98a7999a9}.\index{sqmat@{sqmat}!sqrt_mult@{sqrt\_\-mult}} | 
|---|
| 108 | \index{sqrt_mult@{sqrt\_\-mult}!sqmat@{sqmat}} | 
|---|
| 109 | \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual vec sqmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt  [pure virtual]}}\label{classsqmat_6b79438b5d7544a9c8e110a145355d8f} | 
|---|
| 110 |  | 
|---|
| 111 |  | 
|---|
| 112 | Multiplies square root of $V$ by vector $x$.  | 
|---|
| 113 |  | 
|---|
| 114 | Used e.g. in generating normal samples.  | 
|---|
| 115 |  | 
|---|
| 116 | Implemented in {\bf chmat} \doxyref{}{p.}{classchmat_b22aa239dbaca33e3fb93b4f674d7051}, {\bf fsqmat} \doxyref{}{p.}{classfsqmat_842a774077ee34ac3c36d180ab33e103}, and {\bf ldmat} \doxyref{}{p.}{classldmat_fc380626ced6f9244fb58c5f0231174d}. | 
|---|
| 117 |  | 
|---|
| 118 | The documentation for this class was generated from the following file:\begin{CompactItemize} | 
|---|
| 119 | \item  | 
|---|
| 120 | work/mixpp/bdm/math/{\bf libDC.h}\end{CompactItemize} | 
|---|