root/doc/latex/group__math.tex @ 275

Revision 271, 3.6 kB (checked in by smidl, 16 years ago)

Next major revision

Line 
1\hypertarget{group__math}{
2\section{Auxiliary math functions}
3\label{group__math}\index{Auxiliary math functions@{Auxiliary math functions}}
4}
5
6
7\subsection*{Classes}
8\begin{CompactItemize}
9\item 
10class \hyperlink{classsqmat}{sqmat}
11\begin{CompactList}\small\item\em Virtual class for representation of double symmetric matrices in square-root form. \item\end{CompactList}\item 
12class \hyperlink{classfsqmat}{fsqmat}
13\begin{CompactList}\small\item\em Fake \hyperlink{classsqmat}{sqmat}. This class maps \hyperlink{classsqmat}{sqmat} operations to operations on full matrix. \item\end{CompactList}\item 
14class \hyperlink{classldmat}{ldmat}
15\begin{CompactList}\small\item\em Matrix stored in LD form, (commonly known as UD). \item\end{CompactList}\end{CompactItemize}
16\subsection*{Functions}
17\begin{CompactItemize}
18\item 
19\hypertarget{group__math_g4ed56e73b49db8e7f4a63fa926a8dca4}{
20void \hyperlink{group__math_g4ed56e73b49db8e7f4a63fa926a8dca4}{dydr} (double $\ast$r, double $\ast$f, double $\ast$Dr, double $\ast$Df, double $\ast$R, int jl, int jh, double $\ast$kr, int m, int mx)}
21\label{group__math_g4ed56e73b49db8e7f4a63fa926a8dca4}
22
23\begin{CompactList}\small\item\em Auxiliary function dydr; dyadic reduction. \item\end{CompactList}\item 
24\hypertarget{group__math_g6715d039e6d5d97005cf9e2522dfa474}{
25mat \hyperlink{group__math_g6715d039e6d5d97005cf9e2522dfa474}{ltuinv} (const mat \&L)}
26\label{group__math_g6715d039e6d5d97005cf9e2522dfa474}
27
28\begin{CompactList}\small\item\em Auxiliary function ltuinv; inversion of a triangular matrix;. \item\end{CompactList}\item 
29\hyperlink{classldmat}{ldmat} \& \hyperlink{group__math_gca445ee152a56043af946ea095b2d8f8}{ldmat::operator+=} (const \hyperlink{classldmat}{ldmat} \&ldA)
30\begin{CompactList}\small\item\em add another \hyperlink{classldmat}{ldmat} matrix \item\end{CompactList}\item 
31\hyperlink{classldmat}{ldmat} \& \hyperlink{group__math_ge3f4d2d85ab1ba384c852329aa31d0fb}{ldmat::operator-=} (const \hyperlink{classldmat}{ldmat} \&ldA)
32\begin{CompactList}\small\item\em subtract another \hyperlink{classldmat}{ldmat} matrix \item\end{CompactList}\item 
33\hypertarget{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}{
34int \hyperlink{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}{ldmat::cols} () const }
35\label{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}
36
37\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
38\hypertarget{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}{
39int \hyperlink{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}{ldmat::rows} () const }
40\label{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}
41
42\begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize}
43
44
45\subsection{Function Documentation}
46\hypertarget{group__math_gca445ee152a56043af946ea095b2d8f8}{
47\index{math@{math}!operator+=@{operator+=}}
48\index{operator+=@{operator+=}!math@{math}}
49\subsubsection[operator+=]{\setlength{\rightskip}{0pt plus 5cm}{\bf ldmat} \& ldmat::operator+= (const {\bf ldmat} \& {\em ldA})\hspace{0.3cm}{\tt  \mbox{[}inline, inherited\mbox{]}}}}
50\label{group__math_gca445ee152a56043af946ea095b2d8f8}
51
52
53add another \hyperlink{classldmat}{ldmat} matrix
54
55Operations: mapping of add operation to operators \hypertarget{group__math_ge3f4d2d85ab1ba384c852329aa31d0fb}{
56\index{math@{math}!operator-=@{operator-=}}
57\index{operator-=@{operator-=}!math@{math}}
58\subsubsection[operator-=]{\setlength{\rightskip}{0pt plus 5cm}{\bf ldmat} \& ldmat::operator-= (const {\bf ldmat} \& {\em ldA})\hspace{0.3cm}{\tt  \mbox{[}inline, inherited\mbox{]}}}}
59\label{group__math_ge3f4d2d85ab1ba384c852329aa31d0fb}
60
61
62subtract another \hyperlink{classldmat}{ldmat} matrix
63
64mapping of negative add operation to operators
Note: See TracBrowser for help on using the browser.