root/doc/latex/group__math.tex @ 244

Revision 219, 3.6 kB (checked in by smidl, 16 years ago)

doc

Line 
1\hypertarget{group__math}{
2\section{Auxiliary math functions}
3\label{group__math}\index{Auxiliary math functions@{Auxiliary math functions}}
4}
5\subsection*{Classes}
6\begin{CompactItemize}
7\item 
8class \hyperlink{classsqmat}{sqmat}
9\begin{CompactList}\small\item\em Virtual class for representation of double symmetric matrices in square-root form. \item\end{CompactList}\item 
10class \hyperlink{classfsqmat}{fsqmat}
11\begin{CompactList}\small\item\em Fake \hyperlink{classsqmat}{sqmat}. This class maps \hyperlink{classsqmat}{sqmat} operations to operations on full matrix. \item\end{CompactList}\item 
12class \hyperlink{classldmat}{ldmat}
13\begin{CompactList}\small\item\em Matrix stored in LD form, (commonly known as UD). \item\end{CompactList}\end{CompactItemize}
14\subsection*{Functions}
15\begin{CompactItemize}
16\item 
17\hypertarget{group__math_g4ed56e73b49db8e7f4a63fa926a8dca4}{
18void \hyperlink{group__math_g4ed56e73b49db8e7f4a63fa926a8dca4}{dydr} (double $\ast$r, double $\ast$f, double $\ast$Dr, double $\ast$Df, double $\ast$R, int jl, int jh, double $\ast$kr, int m, int mx)}
19\label{group__math_g4ed56e73b49db8e7f4a63fa926a8dca4}
20
21\begin{CompactList}\small\item\em Auxiliary function dydr; dyadic reduction. \item\end{CompactList}\item 
22\hypertarget{group__math_g6715d039e6d5d97005cf9e2522dfa474}{
23mat \hyperlink{group__math_g6715d039e6d5d97005cf9e2522dfa474}{ltuinv} (const mat \&L)}
24\label{group__math_g6715d039e6d5d97005cf9e2522dfa474}
25
26\begin{CompactList}\small\item\em Auxiliary function ltuinv; inversion of a triangular matrix;. \item\end{CompactList}\item 
27\hyperlink{classldmat}{ldmat} \& \hyperlink{group__math_gca445ee152a56043af946ea095b2d8f8}{ldmat::operator+=} (const \hyperlink{classldmat}{ldmat} \&ldA)
28\begin{CompactList}\small\item\em add another \hyperlink{classldmat}{ldmat} matrix \item\end{CompactList}\item 
29\hyperlink{classldmat}{ldmat} \& \hyperlink{group__math_ge3f4d2d85ab1ba384c852329aa31d0fb}{ldmat::operator-=} (const \hyperlink{classldmat}{ldmat} \&ldA)
30\begin{CompactList}\small\item\em subtract another \hyperlink{classldmat}{ldmat} matrix \item\end{CompactList}\item 
31\hypertarget{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}{
32int \hyperlink{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}{ldmat::cols} () const }
33\label{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}
34
35\begin{CompactList}\small\item\em access function \item\end{CompactList}\item 
36\hypertarget{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}{
37int \hyperlink{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}{ldmat::rows} () const }
38\label{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}
39
40\begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize}
41
42
43\subsection{Function Documentation}
44\hypertarget{group__math_gca445ee152a56043af946ea095b2d8f8}{
45\index{math@{math}!operator+=@{operator+=}}
46\index{operator+=@{operator+=}!math@{math}}
47\subsubsection[operator+=]{\setlength{\rightskip}{0pt plus 5cm}{\bf ldmat} \& ldmat::operator+= (const {\bf ldmat} \& {\em ldA})\hspace{0.3cm}{\tt  \mbox{[}inline, inherited\mbox{]}}}}
48\label{group__math_gca445ee152a56043af946ea095b2d8f8}
49
50
51add another \hyperlink{classldmat}{ldmat} matrix
52
53Operations: mapping of add operation to operators \hypertarget{group__math_ge3f4d2d85ab1ba384c852329aa31d0fb}{
54\index{math@{math}!operator-=@{operator-=}}
55\index{operator-=@{operator-=}!math@{math}}
56\subsubsection[operator-=]{\setlength{\rightskip}{0pt plus 5cm}{\bf ldmat} \& ldmat::operator-= (const {\bf ldmat} \& {\em ldA})\hspace{0.3cm}{\tt  \mbox{[}inline, inherited\mbox{]}}}}
57\label{group__math_ge3f4d2d85ab1ba384c852329aa31d0fb}
58
59
60subtract another \hyperlink{classldmat}{ldmat} matrix
61
62mapping of negative add operation to operators
Note: See TracBrowser for help on using the browser.