|
Revision 22, 1.9 kB
(checked in by smidl, 18 years ago)
|
|
upravy Kalmana
|
-
Property svn:eol-style set to
native
|
| Line | |
|---|
| 1 | \section{work/mixpp/bdm/stat/libBM.h File Reference} |
|---|
| 2 | \label{libBM_8h}\index{work/mixpp/bdm/stat/libBM.h@{work/mixpp/bdm/stat/libBM.h}} |
|---|
| 3 | Bayesian Models (bm) that use Bayes rule to learn from observations. |
|---|
| 4 | |
|---|
| 5 | {\tt \#include $<$itpp/itbase.h$>$}\par |
|---|
| 6 | |
|---|
| 7 | |
|---|
| 8 | Include dependency graph for libBM.h:\nopagebreak |
|---|
| 9 | \begin{figure}[H] |
|---|
| 10 | \begin{center} |
|---|
| 11 | \leavevmode |
|---|
| 12 | \includegraphics[width=100pt]{libBM_8h__incl} |
|---|
| 13 | \end{center} |
|---|
| 14 | \end{figure} |
|---|
| 15 | |
|---|
| 16 | |
|---|
| 17 | This graph shows which files directly or indirectly include this file:\nopagebreak |
|---|
| 18 | \begin{figure}[H] |
|---|
| 19 | \begin{center} |
|---|
| 20 | \leavevmode |
|---|
| 21 | \includegraphics[width=361pt]{libBM_8h__dep__incl} |
|---|
| 22 | \end{center} |
|---|
| 23 | \end{figure} |
|---|
| 24 | \subsection*{Classes} |
|---|
| 25 | \begin{CompactItemize} |
|---|
| 26 | \item |
|---|
| 27 | class {\bf RV} |
|---|
| 28 | \begin{CompactList}\small\item\em Class representing variables, most often random variables. \item\end{CompactList}\item |
|---|
| 29 | class {\bf fnc} |
|---|
| 30 | \begin{CompactList}\small\item\em Class representing function \$f(x)\$ of variable \$x\$ represented by {\tt rv}. \item\end{CompactList}\item |
|---|
| 31 | class {\bf BM} |
|---|
| 32 | \begin{CompactList}\small\item\em Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities. \item\end{CompactList}\item |
|---|
| 33 | class {\bf epdf} |
|---|
| 34 | \begin{CompactList}\small\item\em Probability density function with numerical statistics, e.g. posterior density. \item\end{CompactList}\item |
|---|
| 35 | class {\bf mpdf} |
|---|
| 36 | \begin{CompactList}\small\item\em Conditional probability density, e.g. modeling some dependencies. \item\end{CompactList}\item |
|---|
| 37 | class {\bf DS} |
|---|
| 38 | \begin{CompactList}\small\item\em Abstract class for discrete-time sources of data. \item\end{CompactList}\end{CompactItemize} |
|---|
| 39 | |
|---|
| 40 | |
|---|
| 41 | \subsection{Detailed Description} |
|---|
| 42 | Bayesian Models (bm) that use Bayes rule to learn from observations. |
|---|
| 43 | |
|---|
| 44 | \begin{Desc} |
|---|
| 45 | \item[Author:]Vaclav Smidl.\end{Desc} |
|---|
| 46 | ----------------------------------- BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
|---|
| 47 | |
|---|
| 48 | Using IT++ for numerical operations ----------------------------------- |
|---|