\section{work/git/mixpp/bdm/stat/libBM.h File Reference} \label{libBM_8h}\index{work/git/mixpp/bdm/stat/libBM.h@{work/git/mixpp/bdm/stat/libBM.h}} Bayesian Models (bm) that use Bayes rule to learn from observations. {\tt \#include $<$itpp/itbase.h$>$}\par Include dependency graph for libBM.h:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[width=106pt]{libBM_8h__incl} \end{center} \end{figure} This graph shows which files directly or indirectly include this file:\nopagebreak \begin{figure}[H] \begin{center} \leavevmode \includegraphics[width=420pt]{libBM_8h__dep__incl} \end{center} \end{figure} \subsection*{Classes} \begin{CompactItemize} \item class {\bf RV} \begin{CompactList}\small\item\em Class representing variables, most often random variables. \item\end{CompactList}\item class {\bf fnc} \begin{CompactList}\small\item\em Class representing function $f(x)$ of variable $x$ represented by {\tt rv}. \item\end{CompactList}\item class {\bf epdf} \begin{CompactList}\small\item\em Probability density function with numerical statistics, e.g. posterior density. \item\end{CompactList}\item class {\bf mpdf} \begin{CompactList}\small\item\em Conditional probability density, e.g. modeling some dependencies. \item\end{CompactList}\item class {\bf mepdf} \begin{CompactList}\small\item\em Unconditional \doxyref{mpdf}{p.}{classmpdf}, allows using \doxyref{epdf}{p.}{classepdf} in the role of \doxyref{mpdf}{p.}{classmpdf}. \item\end{CompactList}\item class {\bf DS} \begin{CompactList}\small\item\em Abstract class for discrete-time sources of data. \item\end{CompactList}\item class {\bf BM} \begin{CompactList}\small\item\em Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities. \item\end{CompactList}\item class {\bf BMcond} \begin{CompactList}\small\item\em Conditional Bayesian Filter. \item\end{CompactList}\end{CompactItemize} \subsection{Detailed Description} Bayesian Models (bm) that use Bayes rule to learn from observations. \begin{Desc} \item[Author:]Vaclav Smidl.\end{Desc} ----------------------------------- BDM++ - C++ library for Bayesian Decision Making under Uncertainty Using IT++ for numerical operations -----------------------------------