1 | \section{work/git/mixpp/bdm/stat/libBM.h File Reference} |
---|
2 | \label{libBM_8h}\index{work/git/mixpp/bdm/stat/libBM.h@{work/git/mixpp/bdm/stat/libBM.h}} |
---|
3 | Bayesian Models (bm) that use Bayes rule to learn from observations. |
---|
4 | |
---|
5 | {\tt \#include $<$itpp/itbase.h$>$}\par |
---|
6 | |
---|
7 | |
---|
8 | Include dependency graph for libBM.h:\nopagebreak |
---|
9 | \begin{figure}[H] |
---|
10 | \begin{center} |
---|
11 | \leavevmode |
---|
12 | \includegraphics[width=106pt]{libBM_8h__incl} |
---|
13 | \end{center} |
---|
14 | \end{figure} |
---|
15 | |
---|
16 | |
---|
17 | This graph shows which files directly or indirectly include this file:\nopagebreak |
---|
18 | \begin{figure}[H] |
---|
19 | \begin{center} |
---|
20 | \leavevmode |
---|
21 | \includegraphics[width=420pt]{libBM_8h__dep__incl} |
---|
22 | \end{center} |
---|
23 | \end{figure} |
---|
24 | \subsection*{Classes} |
---|
25 | \begin{CompactItemize} |
---|
26 | \item |
---|
27 | class {\bf RV} |
---|
28 | \begin{CompactList}\small\item\em Class representing variables, most often random variables. \item\end{CompactList}\item |
---|
29 | class {\bf fnc} |
---|
30 | \begin{CompactList}\small\item\em Class representing function $f(x)$ of variable $x$ represented by {\tt rv}. \item\end{CompactList}\item |
---|
31 | class {\bf epdf} |
---|
32 | \begin{CompactList}\small\item\em Probability density function with numerical statistics, e.g. posterior density. \item\end{CompactList}\item |
---|
33 | class {\bf mpdf} |
---|
34 | \begin{CompactList}\small\item\em Conditional probability density, e.g. modeling some dependencies. \item\end{CompactList}\item |
---|
35 | class {\bf mepdf} |
---|
36 | \begin{CompactList}\small\item\em Unconditional \doxyref{mpdf}{p.}{classmpdf}, allows using \doxyref{epdf}{p.}{classepdf} in the role of \doxyref{mpdf}{p.}{classmpdf}. \item\end{CompactList}\item |
---|
37 | class {\bf DS} |
---|
38 | \begin{CompactList}\small\item\em Abstract class for discrete-time sources of data. \item\end{CompactList}\item |
---|
39 | class {\bf BM} |
---|
40 | \begin{CompactList}\small\item\em Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities. \item\end{CompactList}\item |
---|
41 | class {\bf BMcond} |
---|
42 | \begin{CompactList}\small\item\em Conditional Bayesian Filter. \item\end{CompactList}\end{CompactItemize} |
---|
43 | |
---|
44 | |
---|
45 | \subsection{Detailed Description} |
---|
46 | Bayesian Models (bm) that use Bayes rule to learn from observations. |
---|
47 | |
---|
48 | \begin{Desc} |
---|
49 | \item[Author:]Vaclav Smidl.\end{Desc} |
---|
50 | ----------------------------------- BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
---|
51 | |
---|
52 | Using IT++ for numerical operations ----------------------------------- |
---|