root/doc/latex/libBM_8h.tex @ 160

Revision 145, 2.2 kB (checked in by smidl, 16 years ago)

Oprava dokumentace

  • Property svn:eol-style set to native
Line 
1\section{work/git/mixpp/bdm/stat/libBM.h File Reference}
2\label{libBM_8h}\index{work/git/mixpp/bdm/stat/libBM.h@{work/git/mixpp/bdm/stat/libBM.h}}
3Bayesian Models (bm) that use Bayes rule to learn from observations.
4
5{\tt \#include $<$itpp/itbase.h$>$}\par
6
7
8Include dependency graph for libBM.h:\nopagebreak
9\begin{figure}[H]
10\begin{center}
11\leavevmode
12\includegraphics[width=106pt]{libBM_8h__incl}
13\end{center}
14\end{figure}
15
16
17This graph shows which files directly or indirectly include this file:\nopagebreak
18\begin{figure}[H]
19\begin{center}
20\leavevmode
21\includegraphics[width=420pt]{libBM_8h__dep__incl}
22\end{center}
23\end{figure}
24\subsection*{Classes}
25\begin{CompactItemize}
26\item 
27class {\bf RV}
28\begin{CompactList}\small\item\em Class representing variables, most often random variables. \item\end{CompactList}\item 
29class {\bf fnc}
30\begin{CompactList}\small\item\em Class representing function $f(x)$ of variable $x$ represented by {\tt rv}. \item\end{CompactList}\item 
31class {\bf epdf}
32\begin{CompactList}\small\item\em Probability density function with numerical statistics, e.g. posterior density. \item\end{CompactList}\item 
33class {\bf mpdf}
34\begin{CompactList}\small\item\em Conditional probability density, e.g. modeling some dependencies. \item\end{CompactList}\item 
35class {\bf mepdf}
36\begin{CompactList}\small\item\em Unconditional \doxyref{mpdf}{p.}{classmpdf}, allows using \doxyref{epdf}{p.}{classepdf} in the role of \doxyref{mpdf}{p.}{classmpdf}. \item\end{CompactList}\item 
37class {\bf DS}
38\begin{CompactList}\small\item\em Abstract class for discrete-time sources of data. \item\end{CompactList}\item 
39class {\bf BM}
40\begin{CompactList}\small\item\em Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities. \item\end{CompactList}\item 
41class {\bf BMcond}
42\begin{CompactList}\small\item\em Conditional Bayesian Filter. \item\end{CompactList}\end{CompactItemize}
43
44
45\subsection{Detailed Description}
46Bayesian Models (bm) that use Bayes rule to learn from observations.
47
48\begin{Desc}
49\item[Author:]Vaclav Smidl.\end{Desc}
50----------------------------------- BDM++ - C++ library for Bayesian Decision Making under Uncertainty
51
52Using IT++ for numerical operations -----------------------------------
Note: See TracBrowser for help on using the browser.