root/doc/latex/libBM_8h.tex @ 162

Revision 162, 2.6 kB (checked in by smidl, 16 years ago)

opravy a dokumentace

  • Property svn:eol-style set to native
Line 
1\section{work/git/mixpp/bdm/stat/libBM.h File Reference}
2\label{libBM_8h}\index{work/git/mixpp/bdm/stat/libBM.h@{work/git/mixpp/bdm/stat/libBM.h}}
3Bayesian Models (bm) that use Bayes rule to learn from observations.
4
5{\tt \#include $<$itpp/itbase.h$>$}\par
6
7
8Include dependency graph for libBM.h:\nopagebreak
9\begin{figure}[H]
10\begin{center}
11\leavevmode
12\includegraphics[width=106pt]{libBM_8h__incl}
13\end{center}
14\end{figure}
15
16
17This graph shows which files directly or indirectly include this file:\nopagebreak
18\begin{figure}[H]
19\begin{center}
20\leavevmode
21\includegraphics[width=420pt]{libBM_8h__dep__incl}
22\end{center}
23\end{figure}
24\subsection*{Classes}
25\begin{CompactItemize}
26\item 
27class {\bf str}
28\begin{CompactList}\small\item\em Structure of \doxyref{RV}{p.}{classRV} (used internally). \item\end{CompactList}\item 
29class {\bf RV}
30\begin{CompactList}\small\item\em Class representing variables, most often random variables. \item\end{CompactList}\item 
31class {\bf fnc}
32\begin{CompactList}\small\item\em Class representing function $f(x)$ of variable $x$ represented by {\tt rv}. \item\end{CompactList}\item 
33class {\bf epdf}
34\begin{CompactList}\small\item\em Probability density function with numerical statistics, e.g. posterior density. \item\end{CompactList}\item 
35class {\bf mpdf}
36\begin{CompactList}\small\item\em Conditional probability density, e.g. modeling some dependencies. \item\end{CompactList}\item 
37class {\bf mepdf}
38\begin{CompactList}\small\item\em Unconditional \doxyref{mpdf}{p.}{classmpdf}, allows using \doxyref{epdf}{p.}{classepdf} in the role of \doxyref{mpdf}{p.}{classmpdf}. \item\end{CompactList}\item 
39class {\bf DS}
40\begin{CompactList}\small\item\em Abstract class for discrete-time sources of data. \item\end{CompactList}\item 
41class {\bf BM}
42\begin{CompactList}\small\item\em Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities. \item\end{CompactList}\item 
43class {\bf BMcond}
44\begin{CompactList}\small\item\em Conditional Bayesian Filter. \item\end{CompactList}\end{CompactItemize}
45\subsection*{Functions}
46\begin{CompactItemize}
47\item 
48{\bf RV} {\bf concat} (const {\bf RV} \&rv1, const {\bf RV} \&rv2)\label{libBM_8h_33c114e83980d883c5b211c47d5322a4}
49
50\begin{CompactList}\small\item\em Concat two random variables. \item\end{CompactList}\end{CompactItemize}
51
52
53\subsection{Detailed Description}
54Bayesian Models (bm) that use Bayes rule to learn from observations.
55
56\begin{Desc}
57\item[Author:]Vaclav Smidl.\end{Desc}
58----------------------------------- BDM++ - C++ library for Bayesian Decision Making under Uncertainty
59
60Using IT++ for numerical operations -----------------------------------
Note: See TracBrowser for help on using the browser.