| 1 | \hypertarget{libBM_8h}{ |
|---|
| 2 | \section{work/git/mixpp/bdm/stat/libBM.h File Reference} |
|---|
| 3 | \label{libBM_8h}\index{work/git/mixpp/bdm/stat/libBM.h@{work/git/mixpp/bdm/stat/libBM.h}} |
|---|
| 4 | } |
|---|
| 5 | Bayesian Models (bm) that use Bayes rule to learn from observations. |
|---|
| 6 | |
|---|
| 7 | {\tt \#include $<$itpp/itbase.h$>$}\par |
|---|
| 8 | {\tt \#include \char`\"{}../itpp\_\-ext.h\char`\"{}}\par |
|---|
| 9 | |
|---|
| 10 | |
|---|
| 11 | Include dependency graph for libBM.h:\nopagebreak |
|---|
| 12 | \begin{figure}[H] |
|---|
| 13 | \begin{center} |
|---|
| 14 | \leavevmode |
|---|
| 15 | \includegraphics[width=106pt]{libBM_8h__incl} |
|---|
| 16 | \end{center} |
|---|
| 17 | \end{figure} |
|---|
| 18 | |
|---|
| 19 | |
|---|
| 20 | This graph shows which files directly or indirectly include this file:\nopagebreak |
|---|
| 21 | \begin{figure}[H] |
|---|
| 22 | \begin{center} |
|---|
| 23 | \leavevmode |
|---|
| 24 | \includegraphics[width=420pt]{libBM_8h__dep__incl} |
|---|
| 25 | \end{center} |
|---|
| 26 | \end{figure} |
|---|
| 27 | \subsection*{Classes} |
|---|
| 28 | \begin{CompactItemize} |
|---|
| 29 | \item |
|---|
| 30 | class \hyperlink{classstr}{str} |
|---|
| 31 | \begin{CompactList}\small\item\em Structure of \hyperlink{classRV}{RV} (used internally), i.e. expanded RVs. \item\end{CompactList}\item |
|---|
| 32 | class \hyperlink{classRV}{RV} |
|---|
| 33 | \begin{CompactList}\small\item\em Class representing variables, most often random variables. \item\end{CompactList}\item |
|---|
| 34 | class \hyperlink{classfnc}{fnc} |
|---|
| 35 | \begin{CompactList}\small\item\em Class representing function $f(x)$ of variable $x$ represented by {\tt rv}. \item\end{CompactList}\item |
|---|
| 36 | class \hyperlink{classepdf}{epdf} |
|---|
| 37 | \begin{CompactList}\small\item\em Probability density function with numerical statistics, e.g. posterior density. \item\end{CompactList}\item |
|---|
| 38 | class \hyperlink{classmpdf}{mpdf} |
|---|
| 39 | \begin{CompactList}\small\item\em Conditional probability density, e.g. modeling some dependencies. \item\end{CompactList}\item |
|---|
| 40 | class \hyperlink{classdatalink__e2e}{datalink\_\-e2e} |
|---|
| 41 | \item |
|---|
| 42 | class \hyperlink{classdatalink__m2e}{datalink\_\-m2e} |
|---|
| 43 | \begin{CompactList}\small\item\em data link between \item\end{CompactList}\item |
|---|
| 44 | class \hyperlink{classdatalink__m2m}{datalink\_\-m2m} |
|---|
| 45 | \item |
|---|
| 46 | class \hyperlink{classmepdf}{mepdf} |
|---|
| 47 | \begin{CompactList}\small\item\em Unconditional \hyperlink{classmpdf}{mpdf}, allows using \hyperlink{classepdf}{epdf} in the role of \hyperlink{classmpdf}{mpdf}. \item\end{CompactList}\item |
|---|
| 48 | class \hyperlink{classcompositepdf}{compositepdf} |
|---|
| 49 | \begin{CompactList}\small\item\em Abstract composition of pdfs, a base for specific classes this abstract class is common to \hyperlink{classepdf}{epdf} and \hyperlink{classmpdf}{mpdf}. \item\end{CompactList}\item |
|---|
| 50 | class \hyperlink{classDS}{DS} |
|---|
| 51 | \begin{CompactList}\small\item\em Abstract class for discrete-time sources of data. \item\end{CompactList}\item |
|---|
| 52 | class \hyperlink{classBM}{BM} |
|---|
| 53 | \begin{CompactList}\small\item\em Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities. \item\end{CompactList}\item |
|---|
| 54 | class \hyperlink{classBMcond}{BMcond} |
|---|
| 55 | \begin{CompactList}\small\item\em Conditional Bayesian Filter. \item\end{CompactList}\end{CompactItemize} |
|---|
| 56 | \subsection*{Functions} |
|---|
| 57 | \begin{CompactItemize} |
|---|
| 58 | \item |
|---|
| 59 | \hypertarget{libBM_8h_33c114e83980d883c5b211c47d5322a4}{ |
|---|
| 60 | \hyperlink{classRV}{RV} \hyperlink{libBM_8h_33c114e83980d883c5b211c47d5322a4}{concat} (const \hyperlink{classRV}{RV} \&rv1, const \hyperlink{classRV}{RV} \&rv2)} |
|---|
| 61 | \label{libBM_8h_33c114e83980d883c5b211c47d5322a4} |
|---|
| 62 | |
|---|
| 63 | \begin{CompactList}\small\item\em Concat two random variables. \item\end{CompactList}\end{CompactItemize} |
|---|
| 64 | |
|---|
| 65 | |
|---|
| 66 | \subsection{Detailed Description} |
|---|
| 67 | Bayesian Models (bm) that use Bayes rule to learn from observations. |
|---|
| 68 | |
|---|
| 69 | \begin{Desc} |
|---|
| 70 | \item[Author:]Vaclav Smidl.\end{Desc} |
|---|
| 71 | ----------------------------------- BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
|---|
| 72 | |
|---|
| 73 | Using IT++ for numerical operations ----------------------------------- |
|---|