|
Revision 8, 1.2 kB
(checked in by smidl, 18 years ago)
|
|
Kalmany funkci, PF nefunkci
|
-
Property svn:eol-style set to
native
|
| Rev | Line | |
|---|
| [8] | 1 | \section{work/mixpp/libPF.h File Reference} |
|---|
| 2 | \label{libPF_8h}\index{work/mixpp/libPF.h@{work/mixpp/libPF.h}} |
|---|
| 3 | Bayesian Filtering using stochastic sampling (Particle Filters). |
|---|
| 4 | |
|---|
| 5 | {\tt \#include $<$itpp/itbase.h$>$}\par |
|---|
| 6 | {\tt \#include \char`\"{}libBM.h\char`\"{}}\par |
|---|
| 7 | {\tt \#include \char`\"{}libDC.h\char`\"{}}\par |
|---|
| 8 | \subsection*{Classes} |
|---|
| 9 | \begin{CompactItemize} |
|---|
| 10 | \item |
|---|
| 11 | class {\bf PF} |
|---|
| 12 | \begin{CompactList}\small\item\em A Particle Filter prototype. \item\end{CompactList}\item |
|---|
| 13 | class {\bf TrivialPF} |
|---|
| 14 | \begin{CompactList}\small\item\em Trivial particle filter with proposal density that is not conditioned on the data. \item\end{CompactList}\item |
|---|
| 15 | class \textbf{MPF} |
|---|
| 16 | \end{CompactItemize} |
|---|
| 17 | \subsection*{Enumerations} |
|---|
| 18 | \begin{CompactItemize} |
|---|
| 19 | \item |
|---|
| 20 | enum \textbf{RESAMPLING\_\-METHOD} \{ \textbf{MULTINOMIAL} = 0, |
|---|
| 21 | \textbf{DETERMINISTIC} = 1, |
|---|
| 22 | \textbf{RESIDUAL} = 2, |
|---|
| 23 | \textbf{SYSTEMATIC} = 3 |
|---|
| 24 | \} |
|---|
| 25 | \end{CompactItemize} |
|---|
| 26 | |
|---|
| 27 | |
|---|
| 28 | \subsection{Detailed Description} |
|---|
| 29 | Bayesian Filtering using stochastic sampling (Particle Filters). |
|---|
| 30 | |
|---|
| 31 | \begin{Desc} |
|---|
| 32 | \item[Author:]Vaclav Smidl.\end{Desc} |
|---|
| 33 | ----------------------------------- BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
|---|
| 34 | |
|---|
| 35 | Using IT++ for numerical operations ----------------------------------- |
|---|