root/libBM.h @ 8

Revision 8, 2.8 kB (checked in by smidl, 17 years ago)

Kalmany funkci, PF nefunkci

  • Property svn:eol-style set to native
Line 
1/*!
2  \file
3  \brief Bayesian Models (bm) that use Bayes rule to learn from observations
4  \author Vaclav Smidl.
5
6  -----------------------------------
7  BDM++ - C++ library for Bayesian Decision Making under Uncertainty
8
9  Using IT++ for numerical operations
10  -----------------------------------
11*/
12
13#ifndef BM_H
14#define BM_H
15
16#include <itpp/itbase.h>
17//#include <std>
18
19using namespace itpp;
20
21/*!
22* \brief Class representing variables, most often random variables
23
24* More?...
25*/
26class RV {
27        int len;
28        ivec ids;
29        ivec sizes;
30        ivec times;
31        ivec obs;
32        Array<std::string> names;
33
34private:
35        void init ( ivec in_ids, Array<std::string> in_names, ivec in_sizes, ivec in_times, ivec in_obs );
36public:
37        //! Full constructor which is called by the others
38        RV ( ivec in_ids, Array<std::string> in_names, ivec in_sizes, ivec in_times, ivec in_obs );
39        //! default constructor
40        RV ( ivec ids );
41        //! Empty constructor will be set later
42        RV ();
43       
44        //! Printing output e.g. for debugging.
45        friend std::ostream &operator<< ( std::ostream &os, const RV &rv );
46
47        //! Return length (number of scalars) of the RV.
48        int length();
49        //! Find indexes of another rv in self
50        ivec rvfind(RV rv2);
51        //! Add (concat) another variable to the current one
52        RV rvadd(RV rv2);
53        //! Subtract  another variable from the current one
54        RV rvsubt(RV rv2);
55        //! Select only variables at indeces ind
56        RV rvsubselect(ivec ind);
57        //! Select only variables at indeces ind
58        RV operator()(ivec ind);
59        //! Generate new \c RV with \c time shifted by delta.
60        void t(int delta);
61};
62
63
64
65
66//! Class representing function of variables
67class fnc {
68        RV rv;
69};
70
71//! Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.
72class BM {
73public:
74        //!Logarithm of marginalized data likelihood.
75        double ll;
76
77        /*! \brief Incremental Bayes rule
78        @param dt vector of input data
79        @param evall If true, the filter will compute likelihood of the data record and store it in \c ll
80        */
81        virtual void bayes ( const vec &dt, bool evall=true ) = 0;
82        //! Batch Bayes rule (columns of Dt are observations)
83        void bayes ( mat Dt );
84};
85
86//! Probability density function with numerical statistics, e.g. posterior density.
87class epdf {
88        RV rv;
89public:
90        //! Returns the required moment of the epdf
91//      virtual vec moment ( const int order = 1 );
92        //! Returns a sample from the density, $x \sim epdf(rv)$
93        virtual vec sample (){};
94        virtual double eval(const vec &val){};
95};
96
97//! Conditional probability density, e.g. modeling some dependencies.
98class mpdf {
99        //! modeled random variable
100        RV rv;
101        //! random variable in condition
102        RV rvc;
103public:
104
105        //! Returns the required moment of the epdf
106//      virtual fnc moment ( const int order = 1 );
107        //! Returns a sample from the density conditioned on \c cond, $x \sim epdf(rv|cond)$
108        virtual vec samplecond (vec &cond, double lik){};
109        virtual void condition (vec &cond){};
110};
111
112#endif // BM_H
Note: See TracBrowser for help on using the browser.