1 | #include <itpp/itbase.h> |
---|
2 | #include "libDC.h" |
---|
3 | |
---|
4 | using namespace itpp; |
---|
5 | |
---|
6 | using std::endl; |
---|
7 | |
---|
8 | //! Auxiliary function dydr; dyadic reduction |
---|
9 | void dydr( double * r, double *f, double *Dr, double *Df, double *R, int jl, int jh, double *kr, int m, int mx ); |
---|
10 | |
---|
11 | //! Auxiliary function ltuinv; inversion of a triangular matrix; |
---|
12 | //TODO can be done via: dtrtri.f from lapack |
---|
13 | mat ltuinv( const mat &L ); |
---|
14 | |
---|
15 | |
---|
16 | |
---|
17 | ldmat::ldmat( const mat &exL, const vec &exD ) { |
---|
18 | D = exD; |
---|
19 | L = exL; |
---|
20 | } |
---|
21 | |
---|
22 | ldmat::ldmat() { |
---|
23 | vec D ; |
---|
24 | mat L; |
---|
25 | } |
---|
26 | |
---|
27 | ldmat::ldmat( const mat V ) { |
---|
28 | //TODO check if correct!! Based on heuristic observation of lu() |
---|
29 | |
---|
30 | int dim = V.cols(); |
---|
31 | it_assert_debug( dim == V.rows(),"ldmat::ldmat matrix V is not square!" ); |
---|
32 | |
---|
33 | mat U( dim,dim ); |
---|
34 | |
---|
35 | L = V; //Allocate space for L |
---|
36 | ivec p = ivec( dim ); //not clear why? |
---|
37 | |
---|
38 | lu( V,L,U,p ); |
---|
39 | |
---|
40 | //Now, if V is symmetric, L is what we seek and D is on diagonal of U |
---|
41 | D = diag( U ); |
---|
42 | |
---|
43 | //check if V was symmetric |
---|
44 | //TODO How? norm of L-U'? |
---|
45 | //it_assert_debug(); |
---|
46 | } |
---|
47 | |
---|
48 | void ldmat::opupdt( const vec &v, double w ) { |
---|
49 | int dim = D.length(); |
---|
50 | double kr; |
---|
51 | vec r = v; |
---|
52 | //beware! it is potentionally dangerous, if ITpp change _behaviour of _data()! |
---|
53 | double *Lraw = L._data(); |
---|
54 | double *Draw = D._data(); |
---|
55 | double *rraw = r._data(); |
---|
56 | |
---|
57 | it_assert_debug( v.length() == dim, "LD::ldupdt vector v is not compatible with this ld." ); |
---|
58 | |
---|
59 | for ( int i = dim - 1; i >= 0; i-- ) { |
---|
60 | dydr( rraw, Lraw + i, &w, Draw + i, rraw + i, 0, i, &kr, 1, dim ); |
---|
61 | } |
---|
62 | } |
---|
63 | |
---|
64 | std::ostream &operator<< ( std::ostream &os, sqmat &sq ) { |
---|
65 | os << sq.to_mat() << endl; |
---|
66 | } |
---|
67 | |
---|
68 | mat ldmat::to_mat() { |
---|
69 | int dim = D.length(); |
---|
70 | mat V( dim, dim ); |
---|
71 | double sum; |
---|
72 | int r, c, cc; |
---|
73 | |
---|
74 | for ( r = 0;r < dim;r++ ) { //row cycle |
---|
75 | for ( c = r;c < dim;c++ ) { |
---|
76 | //column cycle, using symmetricity => c=r! |
---|
77 | sum = 0.0; |
---|
78 | for ( cc = c;cc < dim;cc++ ) { //cycle over the remaining part of the vector |
---|
79 | sum += L( cc, r ) * D( cc ) * L( cc, c ); |
---|
80 | //here L(cc,r) = L(r,cc)'; |
---|
81 | } |
---|
82 | V( r, c ) = sum; |
---|
83 | // symmetricity |
---|
84 | if ( r != c ) {V( c, r ) = sum;}; |
---|
85 | } |
---|
86 | } |
---|
87 | return V; |
---|
88 | } |
---|
89 | |
---|
90 | |
---|
91 | void ldmat::add( const ldmat &ld2, double w ) { |
---|
92 | int dim = D.length(); |
---|
93 | |
---|
94 | it_assert_debug( ld2.D.length() == dim, "LD.add() incompatible sizes of LDs;" ); |
---|
95 | |
---|
96 | //Fixme can be done more efficiently either via dydr or ldform |
---|
97 | for ( int r = 0; r < dim; r++ ) { |
---|
98 | // Add columns of ld2.L' (i.e. rows of ld2.L) as dyads weighted by ld2.D |
---|
99 | this->opupdt( ld2.L.get_row( r ), w*ld2.D( r ) ); |
---|
100 | } |
---|
101 | } |
---|
102 | |
---|
103 | void ldmat::clear(){L.clear(); for ( int i=0;i<L.cols();i++ ){L( i,i )=1;}; D.clear();} |
---|
104 | |
---|
105 | void ldmat::inv( ldmat &Inv ) { |
---|
106 | int dim = D.length(); |
---|
107 | Inv.clear(); //Inv = zero in LD |
---|
108 | mat U = ltuinv( L ); |
---|
109 | |
---|
110 | //Fixme can be done more efficiently either via dydr or ldform |
---|
111 | for ( int r = 0; r < dim; r++ ) { |
---|
112 | // Add columns of U as dyads weighted by 1/D |
---|
113 | Inv.opupdt( U.get_col( r ), 1.0 / D( r ) ); |
---|
114 | } |
---|
115 | } |
---|
116 | |
---|
117 | void ldmat::mult_qform( const mat &C, bool trans ) { |
---|
118 | |
---|
119 | //TODO better |
---|
120 | |
---|
121 | it_assert_debug( C.cols()==L.cols(), "ldmat::mult_qform wrong input argument" ); |
---|
122 | mat Ct=C; |
---|
123 | |
---|
124 | if ( trans==false ) { // return C*this*C' |
---|
125 | Ct *= this->to_mat(); |
---|
126 | Ct *= C.transpose(); |
---|
127 | } else { // return C'*this*C |
---|
128 | Ct = C.transpose(); |
---|
129 | Ct *= this->to_mat(); |
---|
130 | Ct *= C; |
---|
131 | } |
---|
132 | |
---|
133 | ldmat Lnew=ldmat( Ct ); |
---|
134 | L = Lnew.L; |
---|
135 | D = Lnew.D; |
---|
136 | } |
---|
137 | |
---|
138 | double ldmat::logdet() { |
---|
139 | double ldet = 0.0; |
---|
140 | int i; |
---|
141 | // sum logarithms of diagobal elements |
---|
142 | for ( i=0; i<D.length(); i++ ){ldet+=log( D( i ) );}; |
---|
143 | } |
---|
144 | |
---|
145 | double ldmat::qform( vec &v ) { |
---|
146 | double x = 0.0, sum; |
---|
147 | int i,j; |
---|
148 | |
---|
149 | for ( i=0; i<D.length(); i++ ) { //rows of L |
---|
150 | sum = 0.0; |
---|
151 | for ( j=0; j<=i; j++ ){sum+=L( i,j )*v( j );} |
---|
152 | x +=D( i )*sum*sum; |
---|
153 | }; |
---|
154 | return x; |
---|
155 | } |
---|
156 | |
---|
157 | ldmat& ldmat::operator *= (double x){ |
---|
158 | int i; |
---|
159 | for(i=0;i<D.length();i++){D(i)*=x;}; |
---|
160 | } |
---|
161 | |
---|
162 | |
---|
163 | //////// Auxiliary Functions |
---|
164 | |
---|
165 | mat ltuinv( const mat &L ) { |
---|
166 | int dim = L.cols(); |
---|
167 | mat Il = eye( dim ); |
---|
168 | int i, j, k, m; |
---|
169 | double s; |
---|
170 | |
---|
171 | //Fixme blind transcription of ltuinv.m |
---|
172 | for ( k = 1; k < ( dim );k++ ) { |
---|
173 | for ( i = 0; i < ( dim - k );i++ ) { |
---|
174 | j = i + k; //change in .m 1+1=2, here 0+0+1=1 |
---|
175 | s = L( j, i ); |
---|
176 | for ( m = i + 1; m < ( j - 1 ); m++ ) { |
---|
177 | s += L( m, i ) * Il( j, m ); |
---|
178 | } |
---|
179 | Il( j, i ) = -s; |
---|
180 | } |
---|
181 | } |
---|
182 | |
---|
183 | return Il; |
---|
184 | } |
---|
185 | |
---|
186 | void dydr( double * r, double *f, double *Dr, double *Df, double *R, int jl, int jh, double *kr, int m, int mx ) |
---|
187 | /******************************************************************** |
---|
188 | |
---|
189 | dydr = dyadic reduction, performs transformation of sum of |
---|
190 | 2 dyads r*Dr*r'+ f*Df*f' so that the element of r pointed |
---|
191 | by R is zeroed. This version allows Dr to be NEGATIVE. Hence the name negdydr or dydr_withneg. |
---|
192 | |
---|
193 | Parameters : |
---|
194 | r ... pointer to reduced dyad |
---|
195 | f ... pointer to reducing dyad |
---|
196 | Dr .. pointer to the weight of reduced dyad |
---|
197 | Df .. pointer to the weight of reducing dyad |
---|
198 | R ... pointer to the element of r, which is to be reduced to |
---|
199 | zero; the corresponding element of f is assumed to be 1. |
---|
200 | jl .. lower index of the range within which the dyads are |
---|
201 | modified |
---|
202 | ju .. upper index of the range within which the dyads are |
---|
203 | modified |
---|
204 | kr .. pointer to the coefficient used in the transformation of r |
---|
205 | rnew = r + kr*f |
---|
206 | m .. number of rows of modified matrix (part of which is r) |
---|
207 | Remark : Constant mzero means machine zero and should be modified |
---|
208 | according to the precision of particular machine |
---|
209 | |
---|
210 | V. Peterka 17-7-89 |
---|
211 | |
---|
212 | Added: |
---|
213 | mx .. number of rows of modified matrix (part of which is f) -PN |
---|
214 | |
---|
215 | ********************************************************************/ |
---|
216 | { |
---|
217 | int j, jm; |
---|
218 | double kD, r0; |
---|
219 | double mzero = 2.2e-16; |
---|
220 | double threshold = 1e-4; |
---|
221 | |
---|
222 | if ( fabs( *Dr ) < mzero ) *Dr = 0; |
---|
223 | r0 = *R; |
---|
224 | *R = 0.0; |
---|
225 | kD = *Df; |
---|
226 | *kr = r0 * *Dr; |
---|
227 | *Df = kD + r0 * ( *kr ); |
---|
228 | if ( *Df > mzero ) { |
---|
229 | kD /= *Df; |
---|
230 | *kr /= *Df; |
---|
231 | } else { |
---|
232 | kD = 1.0; |
---|
233 | *kr = 0.0; |
---|
234 | if ( *Df < -threshold ) it_warning( "Problem in dydr: subraction of dyad results in negative definitness. Likely mistake in calling function." ); |
---|
235 | *Df = 0.0; |
---|
236 | } |
---|
237 | *Dr *= kD; |
---|
238 | jm = mx * jl; |
---|
239 | for ( j = m * jl; j < m*jh; j += m ) { |
---|
240 | r[j] -= r0 * f[jm]; |
---|
241 | f[jm] += *kr * r[j]; |
---|
242 | jm += mx; |
---|
243 | } |
---|
244 | } |
---|
245 | |
---|