root/libDC.h @ 8

Revision 8, 3.6 kB (checked in by smidl, 17 years ago)

Kalmany funkci, PF nefunkci

  • Property svn:eol-style set to native
Line 
1/*!
2 * \file
3 * \brief Matrices in decomposed forms (LDL', LU, UDU', etc).
4 * \author Vaclav Smidl.
5 *
6 * -----------------------------------
7 * BDM++ - C++ library for Bayesian Decision Making under Uncertainty
8 *
9 * Using IT++ for numerical operations
10 * -----------------------------------
11 */
12
13#ifndef DC_H
14#define DC_H
15
16#include <itpp/itbase.h>
17
18using namespace itpp;
19
20/*! \brief Virtual class for representation of double symmetric matrices in square-root form.
21
22All operations defined on this class should be optimized for the chosed decomposition.
23*/
24class sqmat {
25public:
26        /*!
27         * Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$.
28         * @param  v Vector forming the outer product to be added
29         * @param  w weight of updating; can be negative
30
31         BLAS-2b operation.
32         */
33        virtual void opupdt( const vec &v, double w ) =0;
34
35        /*! \brief Conversion to full matrix.
36        */
37
38        virtual mat to_mat() =0;
39
40        /*! \brief Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$
41        @param C multiplying matrix,
42        @param trans if true, product $V = C'*V*C$ will be computed instead;
43        */
44        virtual void mult_sym( const mat &C, bool trans=true ) =0;
45
46       
47        /*!
48        \brief Logarithm of a determinant.
49       
50        */
51        virtual double logdet() =0;
52
53        /*!
54        \brief Evaluates quadratic form $x= v'*V*v$;
55       
56        */
57        virtual double qform(vec &v) =0;
58
59//      //! easy version of the
60//      sqmat inv();
61
62        friend std::ostream &operator<< ( std::ostream &os, sqmat &sq );
63
64        //! Clearing matrix so that it corresponds to zeros.
65        virtual void clear() =0;
66       
67        //! Reimplementing common functions of mat: cols().
68        virtual int cols() =0;
69
70        //! Reimplementing common functions of mat: cols().
71        virtual int rows() =0;
72
73};
74
75
76/*! \brief Fake sqmat. This class maps sqmat operations to operations on full matrix.
77
78This class can be used to compare performance of algorithms using decomposed matrices with perormance of the same algorithms using full matrices;
79*/
80class fsqmat: sqmat {
81        void opupdt( const vec &v, double w );
82        mat to_mat();
83        void mult_sym( const mat &C, bool trans=false );
84   void mult_sym( const mat &C, fsqmat &U, bool trans=false );
85        void inv(fsqmat &Inv);
86        void clear();
87       
88        //! Constructor
89        fsqmat(const mat &M);
90       
91        /*! \brief Matrix inversion preserving the chosen form.
92
93        @param Inv a space where the inverse is stored.
94       
95        */
96        virtual void inv(fsqmat* Inv);
97};
98
99class ldmat: sqmat {
100public:
101
102        //! Construct by copy of L and D.
103        ldmat( const mat &L, const vec &D );
104        //! Construct by decomposition of full matrix V.
105        ldmat( mat V );
106        ldmat ();
107
108        // Reimplementation of compulsory operatios
109
110        void opupdt( const vec &v, double w );
111        mat to_mat();
112   void mult_sym( const mat &C, bool trans=false );
113        void add ( const ldmat &ld2, double w=1.0 );
114        double logdet();
115        double qform(vec &v);
116//      sqmat& operator -= ( const sqmat & ld2 );
117        void clear();
118        int cols();
119        int rows();
120
121        /*! \brief Matrix inversion preserving the chosen form.
122
123        @param Inv a space where the inverse is stored.
124       
125        */
126        virtual void inv(ldmat &Inv);
127       
128        /*! \brief Symmetric multiplication of $U$ by a general matrix $C$, result of which is stored in the current class.
129
130        @param Inv a space where the inverse is stored.
131       
132        */
133   void mult_sym( const mat &C, ldmat &U, bool trans=false );
134
135        ldmat& operator += (const ldmat &ldA);
136        ldmat& operator -= (const ldmat &ldA);
137        ldmat& operator *= (double x);
138       
139protected:
140        vec D;
141        mat L;
142
143};
144
145//////// Operations:
146
147inline ldmat& ldmat::operator += (const ldmat &ldA)  {this->add(ldA);return *this;}
148inline ldmat& ldmat::operator -= (const ldmat &ldA)  {this->add(ldA,-1.0);return *this;}
149inline int ldmat::cols(){return L.cols();}
150inline int ldmat::rows(){return L.rows();}
151
152#endif // DC_H
Note: See TracBrowser for help on using the browser.