Revision 8, 1.0 kB
(checked in by smidl, 17 years ago)
|
Kalmany funkci, PF nefunkci
|
Line | |
---|
1 | #include "libPF.h" |
---|
2 | |
---|
3 | using namespace itpp; |
---|
4 | |
---|
5 | using std::endl; |
---|
6 | |
---|
7 | ivec PF::resample( RESAMPLING_METHOD method ) { |
---|
8 | ivec ind( n ); |
---|
9 | return ind; |
---|
10 | } |
---|
11 | |
---|
12 | TrivialPF::TrivialPF(mpdf &par0, mpdf &obs0, mpdf &prop0, int n0){ |
---|
13 | is_proposal = true; |
---|
14 | prop = &prop0; |
---|
15 | par = &par0; |
---|
16 | obs = &obs0; |
---|
17 | } |
---|
18 | TrivialPF::TrivialPF(mpdf &par0, mpdf &obs0, int n0){ |
---|
19 | is_proposal = false; |
---|
20 | par = &par0; |
---|
21 | obs = &obs0; |
---|
22 | } |
---|
23 | |
---|
24 | void TrivialPF::bayes( const vec &dt , bool evalll) { |
---|
25 | int i; |
---|
26 | vec oldp; |
---|
27 | double ll, gl, sum=0.0; |
---|
28 | Sort<double> S; |
---|
29 | ivec ind, iw; |
---|
30 | /* |
---|
31 | //generate new samples |
---|
32 | for ( i=0;i<n;i++ ) { |
---|
33 | prop->evalcond( ptcls( i ), &prop_cond ); |
---|
34 | ptcls( i ) = prop_cond.sample(); |
---|
35 | gl = prop_cond.eval( ptcls( i ) ); |
---|
36 | |
---|
37 | obs.evalcond( ptcls( i ), &obs_cond ); |
---|
38 | ll = obs_cond.eval( dt ); |
---|
39 | w( i ) *= ll/gl; |
---|
40 | } |
---|
41 | //renormalize |
---|
42 | for ( i=0;i<n;i++ ){sum+=w( i );}; |
---|
43 | w( i ) /=sum; //? |
---|
44 | // |
---|
45 | ind = resample(); |
---|
46 | iw = S.sort_index( 0,n-1,w ); // the first one in iw is the strongest |
---|
47 | |
---|
48 | for ( i=0;i<n;i++ ) { |
---|
49 | ptcls( i ) = ptcls( i ); //potentionally dangerous! |
---|
50 | } |
---|
51 | */ |
---|
52 | } |
---|