root/libPF.h @ 8

Revision 8, 1.3 kB (checked in by smidl, 17 years ago)

Kalmany funkci, PF nefunkci

  • Property svn:eol-style set to native
Line 
1/*!
2  \file
3  \brief Bayesian Filtering using stochastic sampling (Particle Filters)
4  \author Vaclav Smidl.
5
6  -----------------------------------
7  BDM++ - C++ library for Bayesian Decision Making under Uncertainty
8
9  Using IT++ for numerical operations
10  -----------------------------------
11*/
12
13#ifndef PF_H
14#define PF_H
15
16#include <itpp/itbase.h>
17#include "libBM.h"
18#include "libDC.h"
19
20using namespace itpp;
21
22enum RESAMPLING_METHOD { MULTINOMIAL = 0, DETERMINISTIC = 1, RESIDUAL = 2, SYSTEMATIC = 3 };
23
24/*!
25* \brief A Particle Filter prototype
26
27Bayesian Filtering equations hold.
28*/
29class PF : public BM { 
30protected:
31        int n; //number of particles
32        vec w; //particle weights
33       
34public:
35        //! Returns indexes of particles that should be resampled
36        ivec resample(RESAMPLING_METHOD method = SYSTEMATIC);
37        //TODO get them on the web
38};
39
40/*!
41* \brief Trivial particle filter with proposal density that is not conditioned on the data.
42
43
44*/
45
46class TrivialPF : public PF {
47        Array<vec> ptcls;
48       
49        bool is_proposal;
50        mpdf *prop;
51        mpdf *par;
52        mpdf *obs;
53       
54        public:
55        TrivialPF(mpdf &par, mpdf &obs, mpdf &prop, int n0);
56        TrivialPF(mpdf &par, mpdf &obs, int n0);
57        void bayes(const vec &dt, bool evalll);
58};
59
60class MPF : public TrivialPF {
61        Array<BM> Bms;
62        public:
63        MPF(BM &B, mpdf &prop, mpdf &obs, mpdf &par);
64        void bayes(vec &dt);   
65};
66
67#endif // KF_H
68
Note: See TracBrowser for help on using the browser.