root/library/bdm/base/itpp/signal/freq_filt.h @ 1407

Revision 1407, 7.2 kB (checked in by sindj, 13 years ago)

Pridany soucasti IT++. signal pro signal processing a stat pro statistiku. JS

RevLine 
[1407]1/*!
2 * \file
3 * \brief Definition of frequency domain filter class
4 * \author Simon Wood
5 *
6 * -------------------------------------------------------------------------
7 *
8 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
9 *
10 * This file is part of IT++ - a C++ library of mathematical, signal
11 * processing, speech processing, and communications classes and functions.
12 *
13 * IT++ is free software: you can redistribute it and/or modify it under the
14 * terms of the GNU General Public License as published by the Free Software
15 * Foundation, either version 3 of the License, or (at your option) any
16 * later version.
17 *
18 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
19 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
20 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
21 * details.
22 *
23 * You should have received a copy of the GNU General Public License along
24 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
25 *
26 * -------------------------------------------------------------------------
27 */
28
29#ifndef FREQ_FILT_H
30#define FREQ_FILT_H
31
32#include <itpp/base/vec.h>
33#include <itpp/base/converters.h>
34#include <itpp/base/math/elem_math.h>
35#include <itpp/base/matfunc.h>
36#include <itpp/base/specmat.h>
37#include <itpp/base/math/min_max.h>
38
39
40namespace itpp
41{
42
43/*!
44  \brief Freq_Filt Frequency domain filtering using the overlap-add technique
45  \ingroup filters
46
47  The Freq_Filt class implements an FFT based filter using the overlap-add
48  technique. The data is filtered by first transforming the input sequence
49  into the frequency domain with an efficient FFT implementation (i.e. FFTW)
50  and then multiplied with a Fourier transformed version of the impulse
51  response. The resulting data is then inversed Fourier transformed to return
52  a filtered time domain signal.
53
54  Freq_Filt is a templated class. The template paramter \c Num_T defines the
55  data type for the impulse response \c b, input data \c x and output data
56  \c y.
57
58  The class constructor chooses an optimal FFT length and data block
59  size that minimizes execution time.
60
61  For example,
62  \code
63  vec b = "1 2 3 4";
64  Freq_Filt<double> FF(b,8000);
65  \endcode
66
67  where 8000 corresponds to the expected vector length of the data
68  to be filtered. The actual number of elements does not have to be
69  exact, but it should be close.
70
71  Here is a complete example:
72  \code
73  vec b = "1 2 3 4";
74  vec x(20);
75  x(0) = 1;
76
77  // Define a filter object for doubles
78  Freq_Filt<double> FF(b,x.length());
79
80  // Filter the data
81  vec y = FF.filter(x);
82
83  // Check the FFT and block sizes that were used
84  int fftsize = FF.getFFTSize();
85  int blk = FF.getBlkSize();
86  \endcode
87
88  To facilitate large data sets the Freq_Filt class has a streaming
89  option. In this mode of operation data history is internally
90  stored. This allows the class to be used for large data sets that
91  are read from disk or streamed in real-time.
92
93  \code
94  bool stream = true;
95  vec b = "1 2 3 4";
96  Freq_Filt<double> FF(b,1000);
97
98  vec x,y;
99  while(!EOF) {
100  x = "read buffer of data";
101  y = FF.filter(x,stream);
102  cout << << endl;
103  }
104  \endcode
105*/
106
107
108template<class Num_T>
109class Freq_Filt
110{
111public:
112  /*!
113    \brief Constructor
114
115    The empty constructor makes it possible to have other container objects
116    of the Freq_Filt class
117  */
118  Freq_Filt() {}
119
120  /*!
121    \brief Constructor with initialization of the impulse response \b b.
122
123    Create a filter object with impulse response \b b. The FFT size and
124    data block size are also initialized.
125    \code
126    vec b = "1 2 3 4";
127    vec x(20);
128    Freq_Filt FF(b,x.length());
129    \endcode
130  */
131  Freq_Filt(const Vec<Num_T> &b, const int xlength) {init(b, xlength);}
132
133  /*!
134    \brief Filter data in the input vector \b x
135
136    Filters data in batch mode or streaming mode
137    \code
138    FF.filter(x); // Filters data in batch mode
139    FF.filter(x,1); // Filters data in streaming mode
140    \endcode
141  */
142  Vec<Num_T> filter(const Vec<Num_T> &x, const int strm = 0);
143
144  //! Return FFT size
145  int get_fft_size() { return fftsize; }
146
147  //! Return the data block size
148  int get_blk_size() { return blksize; }
149
150  //! Destructor
151  ~Freq_Filt() {}
152
153private:
154  int fftsize, blksize;
155  cvec B; // FFT of impulse vector
156  Vec<Num_T> impulse;
157  Vec<Num_T> old_data;
158  cvec zfinal;
159
160  void init(const Vec<Num_T> &b, const int xlength);
161  vec overlap_add(const vec &x);
162  svec overlap_add(const svec &x);
163  ivec overlap_add(const ivec &x);
164  cvec overlap_add(const cvec &x);
165  void overlap_add(const cvec &x, cvec &y);
166};
167
168
169// Initialize impulse rsponse, FFT size and block size
170template <class Num_T>
171void Freq_Filt<Num_T>::init(const Vec<Num_T> &b, const int xlength)
172{
173  // Set the impulse response
174  impulse = b;
175
176  // Get the length of the impulse response
177  int num_elements = impulse.length();
178
179  // Initizlize old data
180  old_data.set_size(0, false);
181
182  // Initialize the final state
183  zfinal.set_size(num_elements - 1, false);
184  zfinal.zeros();
185
186  vec Lvec;
187
188  /*
189   * Compute the FFT size and the data block size to use.
190   * The FFT size is N = L + M -1, where L corresponds to
191   * the block size (to be determined) and M corresponds
192   * to the impulse length. The method used here is designed
193   * to minimize the (number of blocks) * (number of flops per FFT)
194   * Use the FFTW flop computation of 5*N*log2(N).
195   */
196  vec n = linspace(1, 20, 20);
197  n = pow(2.0, n);
198  ivec fftflops = to_ivec(elem_mult(5.0 * n, log2(n)));
199
200  // Find where the FFT sizes are > (num_elements-1)
201  //ivec index = find(n,">", static_cast<double>(num_elements-1));
202  ivec index(n.length());
203  int cnt = 0;
204  for (int ii = 0; ii < n.length(); ii++) {
205    if (n(ii) > (num_elements - 1)) {
206      index(cnt) = ii;
207      cnt += 1;
208    }
209  }
210  index.set_size(cnt, true);
211
212  fftflops = fftflops(index);
213  n = n(index);
214
215  // Minimize number of blocks * number of flops per FFT
216  Lvec = n - (double)(num_elements - 1);
217  int min_ind = min_index(elem_mult(ceil((double)xlength / Lvec), to_vec(fftflops)));
218  fftsize = static_cast<int>(n(min_ind));
219  blksize = static_cast<int>(Lvec(min_ind));
220
221  // Finally, compute the FFT of the impulse response
222  B = fft(to_cvec(impulse), fftsize);
223}
224
225// Filter data
226template <class Num_T>
227Vec<Num_T> Freq_Filt<Num_T>::filter(const Vec<Num_T> &input, const int strm)
228{
229  Vec<Num_T> x, tempv;
230  Vec<Num_T> output;
231
232  /*
233   * If we are not in streaming mode we want to process all of the data.
234   * However, if we are in streaming mode we want to process the data in
235   * blocks that are commensurate with the designed 'blksize' parameter.
236   * So, we do a little book keeping to divide the iinput vector into the
237   * correct size.
238   */
239  if (!strm) {
240    x = input;
241    zfinal.zeros();
242    old_data.set_size(0, false);
243  }
244  else { // we aare in streaming mode
245    tempv = concat(old_data, input);
246    if (tempv.length() <= blksize) {
247      x = tempv;
248      old_data.set_size(0, false);
249    }
250    else {
251      int end = tempv.length();
252      int numblks = end / blksize;
253      if ((end % blksize)) {
254        x = tempv(0, blksize * numblks - 1);
255        old_data = tempv(blksize * numblks, end - 1);
256      }
257      else {
258        x = tempv(0, blksize * numblks - 1);
259        old_data.set_size(0, false);
260      }
261    }
262  }
263  output = overlap_add(x);
264
265  return output;
266}
267
268} // namespace itpp
269
270#endif // #ifndef FREQ_FILT_H
Note: See TracBrowser for help on using the browser.