1 | /*! |
---|
2 | * \file |
---|
3 | * \brief Definition of frequency domain filter class |
---|
4 | * \author Simon Wood |
---|
5 | * |
---|
6 | * ------------------------------------------------------------------------- |
---|
7 | * |
---|
8 | * Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors) |
---|
9 | * |
---|
10 | * This file is part of IT++ - a C++ library of mathematical, signal |
---|
11 | * processing, speech processing, and communications classes and functions. |
---|
12 | * |
---|
13 | * IT++ is free software: you can redistribute it and/or modify it under the |
---|
14 | * terms of the GNU General Public License as published by the Free Software |
---|
15 | * Foundation, either version 3 of the License, or (at your option) any |
---|
16 | * later version. |
---|
17 | * |
---|
18 | * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
19 | * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
---|
20 | * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more |
---|
21 | * details. |
---|
22 | * |
---|
23 | * You should have received a copy of the GNU General Public License along |
---|
24 | * with IT++. If not, see <http://www.gnu.org/licenses/>. |
---|
25 | * |
---|
26 | * ------------------------------------------------------------------------- |
---|
27 | */ |
---|
28 | |
---|
29 | #ifndef FREQ_FILT_H |
---|
30 | #define FREQ_FILT_H |
---|
31 | |
---|
32 | #include <itpp/base/vec.h> |
---|
33 | #include <itpp/base/converters.h> |
---|
34 | #include <itpp/base/math/elem_math.h> |
---|
35 | #include <itpp/base/matfunc.h> |
---|
36 | #include <itpp/base/specmat.h> |
---|
37 | #include <itpp/base/math/min_max.h> |
---|
38 | |
---|
39 | |
---|
40 | namespace itpp |
---|
41 | { |
---|
42 | |
---|
43 | /*! |
---|
44 | \brief Freq_Filt Frequency domain filtering using the overlap-add technique |
---|
45 | \ingroup filters |
---|
46 | |
---|
47 | The Freq_Filt class implements an FFT based filter using the overlap-add |
---|
48 | technique. The data is filtered by first transforming the input sequence |
---|
49 | into the frequency domain with an efficient FFT implementation (i.e. FFTW) |
---|
50 | and then multiplied with a Fourier transformed version of the impulse |
---|
51 | response. The resulting data is then inversed Fourier transformed to return |
---|
52 | a filtered time domain signal. |
---|
53 | |
---|
54 | Freq_Filt is a templated class. The template paramter \c Num_T defines the |
---|
55 | data type for the impulse response \c b, input data \c x and output data |
---|
56 | \c y. |
---|
57 | |
---|
58 | The class constructor chooses an optimal FFT length and data block |
---|
59 | size that minimizes execution time. |
---|
60 | |
---|
61 | For example, |
---|
62 | \code |
---|
63 | vec b = "1 2 3 4"; |
---|
64 | Freq_Filt<double> FF(b,8000); |
---|
65 | \endcode |
---|
66 | |
---|
67 | where 8000 corresponds to the expected vector length of the data |
---|
68 | to be filtered. The actual number of elements does not have to be |
---|
69 | exact, but it should be close. |
---|
70 | |
---|
71 | Here is a complete example: |
---|
72 | \code |
---|
73 | vec b = "1 2 3 4"; |
---|
74 | vec x(20); |
---|
75 | x(0) = 1; |
---|
76 | |
---|
77 | // Define a filter object for doubles |
---|
78 | Freq_Filt<double> FF(b,x.length()); |
---|
79 | |
---|
80 | // Filter the data |
---|
81 | vec y = FF.filter(x); |
---|
82 | |
---|
83 | // Check the FFT and block sizes that were used |
---|
84 | int fftsize = FF.getFFTSize(); |
---|
85 | int blk = FF.getBlkSize(); |
---|
86 | \endcode |
---|
87 | |
---|
88 | To facilitate large data sets the Freq_Filt class has a streaming |
---|
89 | option. In this mode of operation data history is internally |
---|
90 | stored. This allows the class to be used for large data sets that |
---|
91 | are read from disk or streamed in real-time. |
---|
92 | |
---|
93 | \code |
---|
94 | bool stream = true; |
---|
95 | vec b = "1 2 3 4"; |
---|
96 | Freq_Filt<double> FF(b,1000); |
---|
97 | |
---|
98 | vec x,y; |
---|
99 | while(!EOF) { |
---|
100 | x = "read buffer of data"; |
---|
101 | y = FF.filter(x,stream); |
---|
102 | cout << << endl; |
---|
103 | } |
---|
104 | \endcode |
---|
105 | */ |
---|
106 | |
---|
107 | |
---|
108 | template<class Num_T> |
---|
109 | class Freq_Filt |
---|
110 | { |
---|
111 | public: |
---|
112 | /*! |
---|
113 | \brief Constructor |
---|
114 | |
---|
115 | The empty constructor makes it possible to have other container objects |
---|
116 | of the Freq_Filt class |
---|
117 | */ |
---|
118 | Freq_Filt() {} |
---|
119 | |
---|
120 | /*! |
---|
121 | \brief Constructor with initialization of the impulse response \b b. |
---|
122 | |
---|
123 | Create a filter object with impulse response \b b. The FFT size and |
---|
124 | data block size are also initialized. |
---|
125 | \code |
---|
126 | vec b = "1 2 3 4"; |
---|
127 | vec x(20); |
---|
128 | Freq_Filt FF(b,x.length()); |
---|
129 | \endcode |
---|
130 | */ |
---|
131 | Freq_Filt(const Vec<Num_T> &b, const int xlength) {init(b, xlength);} |
---|
132 | |
---|
133 | /*! |
---|
134 | \brief Filter data in the input vector \b x |
---|
135 | |
---|
136 | Filters data in batch mode or streaming mode |
---|
137 | \code |
---|
138 | FF.filter(x); // Filters data in batch mode |
---|
139 | FF.filter(x,1); // Filters data in streaming mode |
---|
140 | \endcode |
---|
141 | */ |
---|
142 | Vec<Num_T> filter(const Vec<Num_T> &x, const int strm = 0); |
---|
143 | |
---|
144 | //! Return FFT size |
---|
145 | int get_fft_size() { return fftsize; } |
---|
146 | |
---|
147 | //! Return the data block size |
---|
148 | int get_blk_size() { return blksize; } |
---|
149 | |
---|
150 | //! Destructor |
---|
151 | ~Freq_Filt() {} |
---|
152 | |
---|
153 | private: |
---|
154 | int fftsize, blksize; |
---|
155 | cvec B; // FFT of impulse vector |
---|
156 | Vec<Num_T> impulse; |
---|
157 | Vec<Num_T> old_data; |
---|
158 | cvec zfinal; |
---|
159 | |
---|
160 | void init(const Vec<Num_T> &b, const int xlength); |
---|
161 | vec overlap_add(const vec &x); |
---|
162 | svec overlap_add(const svec &x); |
---|
163 | ivec overlap_add(const ivec &x); |
---|
164 | cvec overlap_add(const cvec &x); |
---|
165 | void overlap_add(const cvec &x, cvec &y); |
---|
166 | }; |
---|
167 | |
---|
168 | |
---|
169 | // Initialize impulse rsponse, FFT size and block size |
---|
170 | template <class Num_T> |
---|
171 | void Freq_Filt<Num_T>::init(const Vec<Num_T> &b, const int xlength) |
---|
172 | { |
---|
173 | // Set the impulse response |
---|
174 | impulse = b; |
---|
175 | |
---|
176 | // Get the length of the impulse response |
---|
177 | int num_elements = impulse.length(); |
---|
178 | |
---|
179 | // Initizlize old data |
---|
180 | old_data.set_size(0, false); |
---|
181 | |
---|
182 | // Initialize the final state |
---|
183 | zfinal.set_size(num_elements - 1, false); |
---|
184 | zfinal.zeros(); |
---|
185 | |
---|
186 | vec Lvec; |
---|
187 | |
---|
188 | /* |
---|
189 | * Compute the FFT size and the data block size to use. |
---|
190 | * The FFT size is N = L + M -1, where L corresponds to |
---|
191 | * the block size (to be determined) and M corresponds |
---|
192 | * to the impulse length. The method used here is designed |
---|
193 | * to minimize the (number of blocks) * (number of flops per FFT) |
---|
194 | * Use the FFTW flop computation of 5*N*log2(N). |
---|
195 | */ |
---|
196 | vec n = linspace(1, 20, 20); |
---|
197 | n = pow(2.0, n); |
---|
198 | ivec fftflops = to_ivec(elem_mult(5.0 * n, log2(n))); |
---|
199 | |
---|
200 | // Find where the FFT sizes are > (num_elements-1) |
---|
201 | //ivec index = find(n,">", static_cast<double>(num_elements-1)); |
---|
202 | ivec index(n.length()); |
---|
203 | int cnt = 0; |
---|
204 | for (int ii = 0; ii < n.length(); ii++) { |
---|
205 | if (n(ii) > (num_elements - 1)) { |
---|
206 | index(cnt) = ii; |
---|
207 | cnt += 1; |
---|
208 | } |
---|
209 | } |
---|
210 | index.set_size(cnt, true); |
---|
211 | |
---|
212 | fftflops = fftflops(index); |
---|
213 | n = n(index); |
---|
214 | |
---|
215 | // Minimize number of blocks * number of flops per FFT |
---|
216 | Lvec = n - (double)(num_elements - 1); |
---|
217 | int min_ind = min_index(elem_mult(ceil((double)xlength / Lvec), to_vec(fftflops))); |
---|
218 | fftsize = static_cast<int>(n(min_ind)); |
---|
219 | blksize = static_cast<int>(Lvec(min_ind)); |
---|
220 | |
---|
221 | // Finally, compute the FFT of the impulse response |
---|
222 | B = fft(to_cvec(impulse), fftsize); |
---|
223 | } |
---|
224 | |
---|
225 | // Filter data |
---|
226 | template <class Num_T> |
---|
227 | Vec<Num_T> Freq_Filt<Num_T>::filter(const Vec<Num_T> &input, const int strm) |
---|
228 | { |
---|
229 | Vec<Num_T> x, tempv; |
---|
230 | Vec<Num_T> output; |
---|
231 | |
---|
232 | /* |
---|
233 | * If we are not in streaming mode we want to process all of the data. |
---|
234 | * However, if we are in streaming mode we want to process the data in |
---|
235 | * blocks that are commensurate with the designed 'blksize' parameter. |
---|
236 | * So, we do a little book keeping to divide the iinput vector into the |
---|
237 | * correct size. |
---|
238 | */ |
---|
239 | if (!strm) { |
---|
240 | x = input; |
---|
241 | zfinal.zeros(); |
---|
242 | old_data.set_size(0, false); |
---|
243 | } |
---|
244 | else { // we aare in streaming mode |
---|
245 | tempv = concat(old_data, input); |
---|
246 | if (tempv.length() <= blksize) { |
---|
247 | x = tempv; |
---|
248 | old_data.set_size(0, false); |
---|
249 | } |
---|
250 | else { |
---|
251 | int end = tempv.length(); |
---|
252 | int numblks = end / blksize; |
---|
253 | if ((end % blksize)) { |
---|
254 | x = tempv(0, blksize * numblks - 1); |
---|
255 | old_data = tempv(blksize * numblks, end - 1); |
---|
256 | } |
---|
257 | else { |
---|
258 | x = tempv(0, blksize * numblks - 1); |
---|
259 | old_data.set_size(0, false); |
---|
260 | } |
---|
261 | } |
---|
262 | } |
---|
263 | output = overlap_add(x); |
---|
264 | |
---|
265 | return output; |
---|
266 | } |
---|
267 | |
---|
268 | } // namespace itpp |
---|
269 | |
---|
270 | #endif // #ifndef FREQ_FILT_H |
---|