| 1 | /*! |
|---|
| 2 | \file |
|---|
| 3 | \brief Bayesian Filtering for linear Gaussian models (Kalman Filter) and extensions |
|---|
| 4 | \author Vaclav Smidl. |
|---|
| 5 | |
|---|
| 6 | ----------------------------------- |
|---|
| 7 | BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
|---|
| 8 | |
|---|
| 9 | Using IT++ for numerical operations |
|---|
| 10 | ----------------------------------- |
|---|
| 11 | */ |
|---|
| 12 | |
|---|
| 13 | #ifndef KF_H |
|---|
| 14 | #define KF_H |
|---|
| 15 | |
|---|
| 16 | |
|---|
| 17 | #include "../math/functions.h" |
|---|
| 18 | #include "../stat/exp_family.h" |
|---|
| 19 | #include "../math/chmat.h" |
|---|
| 20 | #include "../base/user_info.h" |
|---|
| 21 | //#include <../applications/pmsm/simulator_zdenek/ekf_example/pmsm_mod.h> |
|---|
| 22 | |
|---|
| 23 | namespace bdm { |
|---|
| 24 | |
|---|
| 25 | /*! |
|---|
| 26 | * \brief Basic elements of linear state-space model |
|---|
| 27 | |
|---|
| 28 | Parameter evolution model:\f[ x_{t+1} = A x_{t} + B u_t + Q^{1/2} e_t \f] |
|---|
| 29 | Observation model: \f[ y_t = C x_{t} + C u_t + R^{1/2} w_t. \f] |
|---|
| 30 | Where $e_t$ and $w_t$ are mutually independent vectors of Normal(0,1)-distributed disturbances. |
|---|
| 31 | */ |
|---|
| 32 | template<class sq_T> |
|---|
| 33 | class StateSpace { |
|---|
| 34 | protected: |
|---|
| 35 | //! Matrix A |
|---|
| 36 | mat A; |
|---|
| 37 | //! Matrix B |
|---|
| 38 | mat B; |
|---|
| 39 | //! Matrix C |
|---|
| 40 | mat C; |
|---|
| 41 | //! Matrix D |
|---|
| 42 | mat D; |
|---|
| 43 | //! Matrix Q in square-root form |
|---|
| 44 | sq_T Q; |
|---|
| 45 | //! Matrix R in square-root form |
|---|
| 46 | sq_T R; |
|---|
| 47 | public: |
|---|
| 48 | StateSpace() : A(), B(), C(), D(), Q(), R() {} |
|---|
| 49 | //!copy constructor |
|---|
| 50 | StateSpace ( const StateSpace<sq_T> &S0 ) : A ( S0.A ), B ( S0.B ), C ( S0.C ), D ( S0.D ), Q ( S0.Q ), R ( S0.R ) {} |
|---|
| 51 | //! set all matrix parameters |
|---|
| 52 | void set_parameters ( const mat &A0, const mat &B0, const mat &C0, const mat &D0, const sq_T &Q0, const sq_T &R0 ); |
|---|
| 53 | //! validation |
|---|
| 54 | void validate(); |
|---|
| 55 | //! not virtual in this case |
|---|
| 56 | void from_setting ( const Setting &set ) { |
|---|
| 57 | UI::get ( A, set, "A", UI::compulsory ); |
|---|
| 58 | UI::get ( B, set, "B", UI::compulsory ); |
|---|
| 59 | UI::get ( C, set, "C", UI::compulsory ); |
|---|
| 60 | UI::get ( D, set, "D", UI::compulsory ); |
|---|
| 61 | mat Qtm, Rtm; // full matrices |
|---|
| 62 | if ( !UI::get ( Qtm, set, "Q", UI::optional ) ) { |
|---|
| 63 | vec dq; |
|---|
| 64 | UI::get ( dq, set, "dQ", UI::compulsory ); |
|---|
| 65 | Qtm = diag ( dq ); |
|---|
| 66 | } |
|---|
| 67 | if ( !UI::get ( Rtm, set, "R", UI::optional ) ) { |
|---|
| 68 | vec dr; |
|---|
| 69 | UI::get ( dr, set, "dQ", UI::compulsory ); |
|---|
| 70 | Rtm = diag ( dr ); |
|---|
| 71 | } |
|---|
| 72 | R = Rtm; // automatic conversion to square-root form |
|---|
| 73 | Q = Qtm; |
|---|
| 74 | |
|---|
| 75 | validate(); |
|---|
| 76 | } |
|---|
| 77 | //! access function |
|---|
| 78 | const mat& _A() const { |
|---|
| 79 | return A; |
|---|
| 80 | } |
|---|
| 81 | //! access function |
|---|
| 82 | const mat& _B() const { |
|---|
| 83 | return B; |
|---|
| 84 | } |
|---|
| 85 | //! access function |
|---|
| 86 | const mat& _C() const { |
|---|
| 87 | return C; |
|---|
| 88 | } |
|---|
| 89 | //! access function |
|---|
| 90 | const mat& _D() const { |
|---|
| 91 | return D; |
|---|
| 92 | } |
|---|
| 93 | //! access function |
|---|
| 94 | const sq_T& _Q() const { |
|---|
| 95 | return Q; |
|---|
| 96 | } |
|---|
| 97 | //! access function |
|---|
| 98 | const sq_T& _R() const { |
|---|
| 99 | return R; |
|---|
| 100 | } |
|---|
| 101 | }; |
|---|
| 102 | |
|---|
| 103 | //! Common abstract base for Kalman filters |
|---|
| 104 | template<class sq_T> |
|---|
| 105 | class Kalman: public BM, public StateSpace<sq_T> { |
|---|
| 106 | protected: |
|---|
| 107 | //! id of output |
|---|
| 108 | RV yrv; |
|---|
| 109 | //! Kalman gain |
|---|
| 110 | mat _K; |
|---|
| 111 | //!posterior |
|---|
| 112 | enorm<sq_T> est; |
|---|
| 113 | //!marginal on data f(y|y) |
|---|
| 114 | enorm<sq_T> fy; |
|---|
| 115 | public: |
|---|
| 116 | Kalman<sq_T>() : BM(), StateSpace<sq_T>(), yrv(), _K(), est() {} |
|---|
| 117 | //! Copy constructor |
|---|
| 118 | Kalman<sq_T> ( const Kalman<sq_T> &K0 ) : BM ( K0 ), StateSpace<sq_T> ( K0 ), yrv ( K0.yrv ), _K ( K0._K ), est ( K0.est ), fy ( K0.fy ) {} |
|---|
| 119 | //!set statistics of the posterior |
|---|
| 120 | void set_statistics ( const vec &mu0, const mat &P0 ) { |
|---|
| 121 | est.set_parameters ( mu0, P0 ); |
|---|
| 122 | }; |
|---|
| 123 | //!set statistics of the posterior |
|---|
| 124 | void set_statistics ( const vec &mu0, const sq_T &P0 ) { |
|---|
| 125 | est.set_parameters ( mu0, P0 ); |
|---|
| 126 | }; |
|---|
| 127 | //! return correctly typed posterior (covariant return) |
|---|
| 128 | const enorm<sq_T>& posterior() const { |
|---|
| 129 | return est; |
|---|
| 130 | } |
|---|
| 131 | //! load basic elements of Kalman from structure |
|---|
| 132 | void from_setting ( const Setting &set ) { |
|---|
| 133 | StateSpace<sq_T>::from_setting ( set ); |
|---|
| 134 | |
|---|
| 135 | mat P0; |
|---|
| 136 | vec mu0; |
|---|
| 137 | UI::get ( mu0, set, "mu0", UI::optional ); |
|---|
| 138 | UI::get ( P0, set, "P0", UI::optional ); |
|---|
| 139 | set_statistics ( mu0, P0 ); |
|---|
| 140 | // Initial values |
|---|
| 141 | UI::get ( yrv, set, "yrv", UI::optional ); |
|---|
| 142 | UI::get ( rvc, set, "urv", UI::optional ); |
|---|
| 143 | set_yrv ( concat ( yrv, rvc ) ); |
|---|
| 144 | |
|---|
| 145 | validate(); |
|---|
| 146 | } |
|---|
| 147 | //! validate object |
|---|
| 148 | void validate() { |
|---|
| 149 | StateSpace<sq_T>::validate(); |
|---|
| 150 | dimy = this->C.rows(); |
|---|
| 151 | dimc = this->B.cols(); |
|---|
| 152 | set_dim ( this->A.rows() ); |
|---|
| 153 | |
|---|
| 154 | bdm_assert ( est.dimension(), "Statistics and model parameters mismatch" ); |
|---|
| 155 | } |
|---|
| 156 | |
|---|
| 157 | }; |
|---|
| 158 | /*! |
|---|
| 159 | * \brief Basic Kalman filter with full matrices |
|---|
| 160 | */ |
|---|
| 161 | |
|---|
| 162 | class KalmanFull : public Kalman<fsqmat> { |
|---|
| 163 | public: |
|---|
| 164 | //! For EKFfull; |
|---|
| 165 | KalmanFull() : Kalman<fsqmat>() {}; |
|---|
| 166 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 167 | void bayes ( const vec &yt, const vec &cond = empty_vec ); |
|---|
| 168 | |
|---|
| 169 | virtual KalmanFull* _copy() const { |
|---|
| 170 | KalmanFull* K = new KalmanFull; |
|---|
| 171 | K->set_parameters ( A, B, C, D, Q, R ); |
|---|
| 172 | K->set_statistics ( est._mu(), est._R() ); |
|---|
| 173 | return K; |
|---|
| 174 | } |
|---|
| 175 | }; |
|---|
| 176 | UIREGISTER ( KalmanFull ); |
|---|
| 177 | |
|---|
| 178 | |
|---|
| 179 | /*! \brief Kalman filter in square root form |
|---|
| 180 | |
|---|
| 181 | Trivial example: |
|---|
| 182 | \include kalman_simple.cpp |
|---|
| 183 | |
|---|
| 184 | Complete constructor: |
|---|
| 185 | */ |
|---|
| 186 | class KalmanCh : public Kalman<chmat> { |
|---|
| 187 | protected: |
|---|
| 188 | //! @{ \name Internal storage - needs initialize() |
|---|
| 189 | //! pre array (triangular matrix) |
|---|
| 190 | mat preA; |
|---|
| 191 | //! post array (triangular matrix) |
|---|
| 192 | mat postA; |
|---|
| 193 | //!@} |
|---|
| 194 | public: |
|---|
| 195 | //! copy constructor |
|---|
| 196 | virtual KalmanCh* _copy() const { |
|---|
| 197 | KalmanCh* K = new KalmanCh; |
|---|
| 198 | K->set_parameters ( A, B, C, D, Q, R ); |
|---|
| 199 | K->set_statistics ( est._mu(), est._R() ); |
|---|
| 200 | K->validate(); |
|---|
| 201 | return K; |
|---|
| 202 | } |
|---|
| 203 | //! set parameters for adapt from Kalman |
|---|
| 204 | void set_parameters ( const mat &A0, const mat &B0, const mat &C0, const mat &D0, const chmat &Q0, const chmat &R0 ); |
|---|
| 205 | //! initialize internal parametetrs |
|---|
| 206 | void initialize(); |
|---|
| 207 | |
|---|
| 208 | /*!\brief Here dt = [yt;ut] of appropriate dimensions |
|---|
| 209 | |
|---|
| 210 | The following equality hold::\f[ |
|---|
| 211 | \left[\begin{array}{cc} |
|---|
| 212 | R^{0.5}\\ |
|---|
| 213 | P_{t|t-1}^{0.5}C' & P_{t|t-1}^{0.5}CA'\\ |
|---|
| 214 | & Q^{0.5}\end{array}\right]<\mathrm{orth.oper.}>=\left[\begin{array}{cc} |
|---|
| 215 | R_{y}^{0.5} & KA'\\ |
|---|
| 216 | & P_{t+1|t}^{0.5}\\ |
|---|
| 217 | \\\end{array}\right]\f] |
|---|
| 218 | |
|---|
| 219 | Thus this object evaluates only predictors! Not filtering densities. |
|---|
| 220 | */ |
|---|
| 221 | void bayes ( const vec &yt, const vec &cond = empty_vec ); |
|---|
| 222 | |
|---|
| 223 | void from_setting ( const Setting &set ) { |
|---|
| 224 | Kalman<chmat>::from_setting ( set ); |
|---|
| 225 | validate(); |
|---|
| 226 | } |
|---|
| 227 | void validate() { |
|---|
| 228 | Kalman<chmat>::validate(); |
|---|
| 229 | initialize(); |
|---|
| 230 | } |
|---|
| 231 | }; |
|---|
| 232 | UIREGISTER ( KalmanCh ); |
|---|
| 233 | |
|---|
| 234 | /*! |
|---|
| 235 | \brief Extended Kalman Filter in full matrices |
|---|
| 236 | |
|---|
| 237 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
|---|
| 238 | */ |
|---|
| 239 | class EKFfull : public KalmanFull { |
|---|
| 240 | protected: |
|---|
| 241 | //! Internal Model f(x,u) |
|---|
| 242 | shared_ptr<diffbifn> pfxu; |
|---|
| 243 | |
|---|
| 244 | //! Observation Model h(x,u) |
|---|
| 245 | shared_ptr<diffbifn> phxu; |
|---|
| 246 | |
|---|
| 247 | public: |
|---|
| 248 | //! Default constructor |
|---|
| 249 | EKFfull (); |
|---|
| 250 | |
|---|
| 251 | //! Set nonlinear functions for mean values and covariance matrices. |
|---|
| 252 | void set_parameters ( const shared_ptr<diffbifn> &pfxu, const shared_ptr<diffbifn> &phxu, const mat Q0, const mat R0 ); |
|---|
| 253 | |
|---|
| 254 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 255 | void bayes ( const vec &yt, const vec &cond = empty_vec ); |
|---|
| 256 | //! set estimates |
|---|
| 257 | void set_statistics ( const vec &mu0, const mat &P0 ) { |
|---|
| 258 | est.set_parameters ( mu0, P0 ); |
|---|
| 259 | }; |
|---|
| 260 | //! access function |
|---|
| 261 | const mat _R() { |
|---|
| 262 | return est._R().to_mat(); |
|---|
| 263 | } |
|---|
| 264 | void from_setting ( const Setting &set ) { |
|---|
| 265 | BM::from_setting ( set ); |
|---|
| 266 | shared_ptr<diffbifn> IM = UI::build<diffbifn> ( set, "IM", UI::compulsory ); |
|---|
| 267 | shared_ptr<diffbifn> OM = UI::build<diffbifn> ( set, "OM", UI::compulsory ); |
|---|
| 268 | |
|---|
| 269 | //statistics |
|---|
| 270 | int dim = IM->dimension(); |
|---|
| 271 | vec mu0; |
|---|
| 272 | if ( !UI::get ( mu0, set, "mu0" ) ) |
|---|
| 273 | mu0 = zeros ( dim ); |
|---|
| 274 | |
|---|
| 275 | mat P0; |
|---|
| 276 | vec dP0; |
|---|
| 277 | if ( UI::get ( dP0, set, "dP0" ) ) |
|---|
| 278 | P0 = diag ( dP0 ); |
|---|
| 279 | else if ( !UI::get ( P0, set, "P0" ) ) |
|---|
| 280 | P0 = eye ( dim ); |
|---|
| 281 | |
|---|
| 282 | set_statistics ( mu0, P0 ); |
|---|
| 283 | |
|---|
| 284 | //parameters |
|---|
| 285 | vec dQ, dR; |
|---|
| 286 | UI::get ( dQ, set, "dQ", UI::compulsory ); |
|---|
| 287 | UI::get ( dR, set, "dR", UI::compulsory ); |
|---|
| 288 | set_parameters ( IM, OM, diag ( dQ ), diag ( dR ) ); |
|---|
| 289 | |
|---|
| 290 | // pfxu = UI::build<diffbifn>(set, "IM", UI::compulsory); |
|---|
| 291 | // phxu = UI::build<diffbifn>(set, "OM", UI::compulsory); |
|---|
| 292 | // |
|---|
| 293 | // mat R0; |
|---|
| 294 | // UI::get(R0, set, "R",UI::compulsory); |
|---|
| 295 | // mat Q0; |
|---|
| 296 | // UI::get(Q0, set, "Q",UI::compulsory); |
|---|
| 297 | // |
|---|
| 298 | // |
|---|
| 299 | // mat P0; vec mu0; |
|---|
| 300 | // UI::get(mu0, set, "mu0", UI::optional); |
|---|
| 301 | // UI::get(P0, set, "P0", UI::optional); |
|---|
| 302 | // set_statistics(mu0,P0); |
|---|
| 303 | // // Initial values |
|---|
| 304 | // UI::get (yrv, set, "yrv", UI::optional); |
|---|
| 305 | // UI::get (urv, set, "urv", UI::optional); |
|---|
| 306 | // set_drv(concat(yrv,urv)); |
|---|
| 307 | // |
|---|
| 308 | // // setup StateSpace |
|---|
| 309 | // pfxu->dfdu_cond(mu0, zeros(pfxu->_dimu()), A,true); |
|---|
| 310 | // phxu->dfdu_cond(mu0, zeros(pfxu->_dimu()), C,true); |
|---|
| 311 | // |
|---|
| 312 | } |
|---|
| 313 | |
|---|
| 314 | void validate() { |
|---|
| 315 | KalmanFull::validate(); |
|---|
| 316 | |
|---|
| 317 | // check stats and IM and OM |
|---|
| 318 | } |
|---|
| 319 | }; |
|---|
| 320 | UIREGISTER ( EKFfull ); |
|---|
| 321 | |
|---|
| 322 | |
|---|
| 323 | /*! |
|---|
| 324 | \brief Extended Kalman Filter in Square root |
|---|
| 325 | |
|---|
| 326 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
|---|
| 327 | */ |
|---|
| 328 | |
|---|
| 329 | class EKFCh : public KalmanCh { |
|---|
| 330 | protected: |
|---|
| 331 | //! Internal Model f(x,u) |
|---|
| 332 | shared_ptr<diffbifn> pfxu; |
|---|
| 333 | |
|---|
| 334 | //! Observation Model h(x,u) |
|---|
| 335 | shared_ptr<diffbifn> phxu; |
|---|
| 336 | public: |
|---|
| 337 | //! copy constructor duplicated - calls different set_parameters |
|---|
| 338 | EKFCh* _copy() const { |
|---|
| 339 | return new EKFCh(*this); |
|---|
| 340 | } |
|---|
| 341 | //! Set nonlinear functions for mean values and covariance matrices. |
|---|
| 342 | void set_parameters ( const shared_ptr<diffbifn> &pfxu, const shared_ptr<diffbifn> &phxu, const chmat Q0, const chmat R0 ); |
|---|
| 343 | |
|---|
| 344 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 345 | void bayes ( const vec &yt, const vec &cond = empty_vec ); |
|---|
| 346 | |
|---|
| 347 | void from_setting ( const Setting &set ); |
|---|
| 348 | |
|---|
| 349 | void validate() {}; |
|---|
| 350 | // TODO dodelat void to_setting( Setting &set ) const; |
|---|
| 351 | |
|---|
| 352 | }; |
|---|
| 353 | |
|---|
| 354 | UIREGISTER ( EKFCh ); |
|---|
| 355 | SHAREDPTR ( EKFCh ); |
|---|
| 356 | |
|---|
| 357 | |
|---|
| 358 | //////// INstance |
|---|
| 359 | |
|---|
| 360 | /*! \brief (Switching) Multiple Model |
|---|
| 361 | The model runs several models in parallel and evaluates thier weights (fittness). |
|---|
| 362 | |
|---|
| 363 | The statistics of the resulting density are merged using (geometric?) combination. |
|---|
| 364 | |
|---|
| 365 | The next step is performed with the new statistics for all models. |
|---|
| 366 | */ |
|---|
| 367 | class MultiModel: public BM { |
|---|
| 368 | protected: |
|---|
| 369 | //! List of models between which we switch |
|---|
| 370 | Array<EKFCh*> Models; |
|---|
| 371 | //! vector of model weights |
|---|
| 372 | vec w; |
|---|
| 373 | //! cache of model lls |
|---|
| 374 | vec _lls; |
|---|
| 375 | //! type of switching policy [1=maximum,2=...] |
|---|
| 376 | int policy; |
|---|
| 377 | //! internal statistics |
|---|
| 378 | enorm<chmat> est; |
|---|
| 379 | public: |
|---|
| 380 | //! set internal parameters |
|---|
| 381 | void set_parameters ( Array<EKFCh*> A, int pol0 = 1 ) { |
|---|
| 382 | Models = A;//TODO: test if evalll is set |
|---|
| 383 | w.set_length ( A.length() ); |
|---|
| 384 | _lls.set_length ( A.length() ); |
|---|
| 385 | policy = pol0; |
|---|
| 386 | |
|---|
| 387 | est.set_rv ( RV ( "MM", A ( 0 )->posterior().dimension(), 0 ) ); |
|---|
| 388 | est.set_parameters ( A ( 0 )->posterior().mean(), A ( 0 )->posterior()._R() ); |
|---|
| 389 | } |
|---|
| 390 | void bayes ( const vec &yt, const vec &cond = empty_vec ) { |
|---|
| 391 | int n = Models.length(); |
|---|
| 392 | int i; |
|---|
| 393 | for ( i = 0; i < n; i++ ) { |
|---|
| 394 | Models ( i )->bayes ( yt ); |
|---|
| 395 | _lls ( i ) = Models ( i )->_ll(); |
|---|
| 396 | } |
|---|
| 397 | double mlls = max ( _lls ); |
|---|
| 398 | w = exp ( _lls - mlls ); |
|---|
| 399 | w /= sum ( w ); //normalization |
|---|
| 400 | //set statistics |
|---|
| 401 | switch ( policy ) { |
|---|
| 402 | case 1: { |
|---|
| 403 | int mi = max_index ( w ); |
|---|
| 404 | const enorm<chmat> &st = Models ( mi )->posterior() ; |
|---|
| 405 | est.set_parameters ( st.mean(), st._R() ); |
|---|
| 406 | } |
|---|
| 407 | break; |
|---|
| 408 | default: |
|---|
| 409 | bdm_error ( "unknown policy" ); |
|---|
| 410 | } |
|---|
| 411 | // copy result to all models |
|---|
| 412 | for ( i = 0; i < n; i++ ) { |
|---|
| 413 | Models ( i )->set_statistics ( est.mean(), est._R() ); |
|---|
| 414 | } |
|---|
| 415 | } |
|---|
| 416 | //! return correctly typed posterior (covariant return) |
|---|
| 417 | const enorm<chmat>& posterior() const { |
|---|
| 418 | return est; |
|---|
| 419 | } |
|---|
| 420 | |
|---|
| 421 | void from_setting ( const Setting &set ); |
|---|
| 422 | |
|---|
| 423 | }; |
|---|
| 424 | UIREGISTER ( MultiModel ); |
|---|
| 425 | SHAREDPTR ( MultiModel ); |
|---|
| 426 | |
|---|
| 427 | //! conversion of outer ARX model (mlnorm) to state space model |
|---|
| 428 | /*! |
|---|
| 429 | The model is constructed as: |
|---|
| 430 | \f[ x_{t+1} = Ax_t + B u_t + R^{1/2} e_t, y_t=Cx_t+Du_t + R^{1/2}w_t, \f] |
|---|
| 431 | For example, for: |
|---|
| 432 | Using Frobenius form, see []. |
|---|
| 433 | |
|---|
| 434 | For easier use in the future, indeces theta_in_A and theta_in_C are set. TODO - explain |
|---|
| 435 | */ |
|---|
| 436 | //template<class sq_T> |
|---|
| 437 | class StateCanonical: public StateSpace<fsqmat> { |
|---|
| 438 | protected: |
|---|
| 439 | //! remember connection from theta ->A |
|---|
| 440 | datalink_part th2A; |
|---|
| 441 | //! remember connection from theta ->C |
|---|
| 442 | datalink_part th2C; |
|---|
| 443 | //! remember connection from theta ->D |
|---|
| 444 | datalink_part th2D; |
|---|
| 445 | //!cached first row of A |
|---|
| 446 | vec A1row; |
|---|
| 447 | //!cached first row of C |
|---|
| 448 | vec C1row; |
|---|
| 449 | //!cached first row of D |
|---|
| 450 | vec D1row; |
|---|
| 451 | |
|---|
| 452 | public: |
|---|
| 453 | //! set up this object to match given mlnorm |
|---|
| 454 | void connect_mlnorm ( const mlnorm<fsqmat> &ml ); |
|---|
| 455 | |
|---|
| 456 | //! fast function to update parameters from ml - not checked for compatibility!! |
|---|
| 457 | void update_from ( const mlnorm<fsqmat> &ml ); |
|---|
| 458 | }; |
|---|
| 459 | /*! |
|---|
| 460 | State-Space representation of multivariate autoregressive model. |
|---|
| 461 | The original model: |
|---|
| 462 | \f[ y_t = \theta [\ldots y_{t-k}, \ldots u_{t-l}, \ldots z_{t-m}]' + \Sigma^{-1/2} e_t \f] |
|---|
| 463 | where \f$ k,l,m \f$ are maximum delayes of corresponding variables in the regressor. |
|---|
| 464 | |
|---|
| 465 | The transformed state is: |
|---|
| 466 | \f[ x_t = [y_{t} \ldots y_{t-k-1}, u_{t} \ldots u_{t-l-1}, z_{t} \ldots z_{t-m-1}]\f] |
|---|
| 467 | |
|---|
| 468 | The state accumulates all delayed values starting from time \f$ t \f$ . |
|---|
| 469 | |
|---|
| 470 | |
|---|
| 471 | */ |
|---|
| 472 | class StateFromARX: public StateSpace<chmat> { |
|---|
| 473 | protected: |
|---|
| 474 | //! remember connection from theta ->A |
|---|
| 475 | datalink_part th2A; |
|---|
| 476 | //! remember connection from theta ->B |
|---|
| 477 | datalink_part th2B; |
|---|
| 478 | //!function adds n diagonal elements from given starting point r,c |
|---|
| 479 | void diagonal_part ( mat &A, int r, int c, int n ) { |
|---|
| 480 | for ( int i = 0; i < n; i++ ) { |
|---|
| 481 | A ( r, c ) = 1.0; |
|---|
| 482 | r++; |
|---|
| 483 | c++; |
|---|
| 484 | } |
|---|
| 485 | }; |
|---|
| 486 | //! similar to ARX.have_constant |
|---|
| 487 | bool have_constant; |
|---|
| 488 | public: |
|---|
| 489 | //! set up this object to match given mlnorm |
|---|
| 490 | //! Note that state-space and common mpdf use different meaning of \f$ _t \f$ in \f$ u_t \f$. |
|---|
| 491 | //!While mlnorm typically assumes that \f$ u_t \rightarrow y_t \f$ in state space it is \f$ u_{t-1} \rightarrow y_t \f$ |
|---|
| 492 | //! For consequences in notation of internal variable xt see arx2statespace_notes.lyx. |
|---|
| 493 | void connect_mlnorm ( const mlnorm<chmat> &ml, RV &xrv, RV &urv ); |
|---|
| 494 | |
|---|
| 495 | //! fast function to update parameters from ml - not checked for compatibility!! |
|---|
| 496 | void update_from ( const mlnorm<chmat> &ml ); |
|---|
| 497 | |
|---|
| 498 | //! access function |
|---|
| 499 | bool _have_constant() const { |
|---|
| 500 | return have_constant; |
|---|
| 501 | } |
|---|
| 502 | }; |
|---|
| 503 | |
|---|
| 504 | /////////// INSTANTIATION |
|---|
| 505 | |
|---|
| 506 | template<class sq_T> |
|---|
| 507 | void StateSpace<sq_T>::set_parameters ( const mat &A0, const mat &B0, const mat &C0, const mat &D0, const sq_T &Q0, const sq_T &R0 ) { |
|---|
| 508 | |
|---|
| 509 | A = A0; |
|---|
| 510 | B = B0; |
|---|
| 511 | C = C0; |
|---|
| 512 | D = D0; |
|---|
| 513 | R = R0; |
|---|
| 514 | Q = Q0; |
|---|
| 515 | validate(); |
|---|
| 516 | } |
|---|
| 517 | |
|---|
| 518 | template<class sq_T> |
|---|
| 519 | void StateSpace<sq_T>::validate() { |
|---|
| 520 | bdm_assert ( A.cols() == A.rows(), "KalmanFull: A is not square" ); |
|---|
| 521 | bdm_assert ( B.rows() == A.rows(), "KalmanFull: B is not compatible" ); |
|---|
| 522 | bdm_assert ( C.cols() == A.rows(), "KalmanFull: C is not compatible" ); |
|---|
| 523 | bdm_assert ( ( D.rows() == C.rows() ) && ( D.cols() == B.cols() ), "KalmanFull: D is not compatible" ); |
|---|
| 524 | bdm_assert ( ( Q.cols() == A.rows() ) && ( Q.rows() == A.rows() ), "KalmanFull: Q is not compatible" ); |
|---|
| 525 | bdm_assert ( ( R.cols() == C.rows() ) && ( R.rows() == C.rows() ), "KalmanFull: R is not compatible" ); |
|---|
| 526 | } |
|---|
| 527 | |
|---|
| 528 | } |
|---|
| 529 | #endif // KF_H |
|---|
| 530 | |
|---|