/*! \file \brief Bayesian Filtering for mixtures of exponential family (EF) members \author Vaclav Smidl. ----------------------------------- BDM++ - C++ library for Bayesian Decision Making under Uncertainty Using IT++ for numerical operations ----------------------------------- */ #ifndef MIXTURES_H #define MIXTURES_H #include "../math/functions.h" #include "../stat/exp_family.h" #include "../stat/emix.h" namespace bdm { //! enum switch for internal approximation used in MixEF enum MixEF_METHOD { EM = 0, QB = 1}; /*! * \brief Mixture of Exponential Family Densities An approximate estimation method for models with latent discrete variable, such as mixture models of the following kind: \f[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \f] where \f$\psi\f$ is a known function of past outputs, \f$w=[w_1,\ldots,w_n]\f$ are component weights, and component parameters \f$\theta_i\f$ are assumed to be mutually independent. \f$\Theta\f$ is an aggregation af all component parameters and weights, i.e. \f$\Theta = [\theta_1,\ldots,\theta_n,w]\f$. The characteristic feature of this model is that if the exact values of the latent variable were known, estimation of the parameters can be handled by a single model. For example, for the case of mixture models, posterior density for each component parameters would be a BayesianModel from Exponential Family. This class uses EM-style type algorithms for estimation of its parameters. Under this simplification, the posterior density is a product of exponential family members, hence under EM-style approximate estimation this class itself belongs to the exponential family. TODO: Extend BM to use rvc. */ class MixEF: public BMEF { protected: //!Number of components int n; //! Models for Components of \f$\theta_i\f$ Array Coms; //! Statistics for weights multiBM weights; //!Posterior on component parameters eprod* est; ////!Indeces of component rvc in common rvc //! Flag for a method that is used in the inference MixEF_METHOD method; //! Auxiliary function for use in constructors void build_est() { est = new eprod; if ( n > 0 ) { Array epdfs ( n + 1 ); for ( int i = 0; i < Coms.length(); i++ ) { epdfs ( i ) = & ( Coms ( i )->posterior() ); } // last in the product is the weight epdfs ( n ) = & ( weights.posterior() ); est->set_parameters ( epdfs, false ); } } public: //! Full constructor MixEF ( const Array &Coms0, const vec &alpha0 ) : BMEF ( ), n ( Coms0.length() ), Coms ( n ), weights (), method ( QB ) { for ( int i = 0; i < n; i++ ) { Coms ( i ) = ( BMEF* ) Coms0 ( i )->_copy_(); } build_est(); } //! Constructor of empty mixture MixEF () : BMEF ( ), n ( 0 ), Coms ( 0 ), weights (), method ( QB ) { build_est(); } //! Copy constructor MixEF ( const MixEF &M2 ) : BMEF ( ), n ( M2.n ), Coms ( n ), weights ( M2.weights ), method ( M2.method ) { for ( int i = 0; i < n; i++ ) { Coms ( i ) = M2.Coms ( i )->_copy_(); } build_est(); } //! Initializing the mixture by a random pick of centroids from data //! \param Com0 Initial component - necessary to determine its type. //! \param Data Data on which the initialization will be done //! \param c Initial number of components, default=5 void init ( BMEF* Com0, const mat &Data, int c = 5 ); //Destructor ~MixEF() { delete est; for ( int i = 0; i < n; i++ ) { delete Coms ( i ); } } //! Recursive EM-like algorithm (QB-variant), see Karny et. al, 2006 void bayes ( const vec &dt ); //! EM algorithm void bayes ( const mat &dt ); //! batch weighted Bayes rule void bayesB ( const mat &dt, const vec &wData ); double logpred ( const vec &dt ) const; //! return correctly typed posterior (covariant return) const eprod& posterior() const { return *est; } emix* epredictor() const; //! Flatten the density as if it was not estimated from the data void flatten ( const BMEF* M2 ); //! Access function BMEF* _Coms ( int i ) { return Coms ( i ); } //!Set which method is to be used void set_method ( MixEF_METHOD M ) { method = M; } }; } #endif // MIXTURES_H