#include "emix.h" namespace bdm { void emix::validate (){ bdm_assert ( Coms.length() > 0, "There has to be at least one component." ); bdm_assert ( Coms.length() == w.length(), "It is obligatory to define weights of all the components." ); double sum_w = sum ( w ); bdm_assert ( sum_w != 0, "There has to be a component with non-zero weight." ); w = w / sum_w; dim = Coms ( 0 )->dimension(); RV rv_tmp= Coms ( 0 )->_rv() ; bool isnam=true; for ( int i = 0; i < Coms.length(); i++ ) { bdm_assert ( dim == ( Coms ( i )->dimension() ), "Component sizes do not match!" ); isnam &= Coms(i)->isnamed() & Coms(i)->_rv().equal(rv_tmp); } if (isnam) set_rv ( rv_tmp); } void emix::from_setting ( const Setting &set ) { UI::get ( Coms, set, "pdfs", UI::compulsory ); if ( !UI::get ( w, set, "weights", UI::optional ) ) { int len = Coms.length(); w.set_length ( len ); w = 1.0 / len; } validate(); } vec emix::sample() const { //Sample which component vec cumDist = cumsum ( w ); double u0; #pragma omp critical u0 = UniRNG.sample(); int i = 0; while ( ( cumDist ( i ) < u0 ) && ( i < ( w.length() - 1 ) ) ) { i++; } return Coms ( i )->sample(); } vec emix::mean() const { int i; vec mu = zeros ( dim ); for ( i = 0; i < w.length(); i++ ) { mu += w ( i ) * Coms ( i )->mean(); } return mu; } vec emix::variance() const { //non-central moment vec mom2 = zeros ( dim ); for ( int i = 0; i < w.length(); i++ ) { mom2 += w ( i ) * ( Coms ( i )->variance() + pow ( Coms ( i )->mean(), 2 ) ); } //central moment return mom2 - pow ( mean(), 2 ); } double emix::evallog ( const vec &val ) const { int i; double sum = 0.0; for ( i = 0; i < w.length(); i++ ) { sum += w ( i ) * exp ( Coms ( i )->evallog ( val ) ); } if ( sum == 0.0 ) { sum = std::numeric_limits::epsilon(); } double tmp = log ( sum ); bdm_assert_debug ( std::isfinite ( tmp ), "Infinite" ); return tmp; } vec emix::evallog_mat ( const mat &Val ) const { vec x = zeros ( Val.cols() ); for ( int i = 0; i < w.length(); i++ ) { x += w ( i ) * exp ( Coms ( i )->evallog_mat ( Val ) ); } return log ( x ); }; mat emix::evallog_coms ( const mat &Val ) const { mat X ( w.length(), Val.cols() ); for ( int i = 0; i < w.length(); i++ ) { X.set_row ( i, w ( i ) *exp ( Coms ( i )->evallog_mat ( Val ) ) ); } return X; } shared_ptr emix::marginal ( const RV &rv ) const { emix *tmp = new emix(); shared_ptr narrow ( tmp ); marginal ( rv, *tmp ); return narrow; } void emix::marginal ( const RV &rv, emix &target ) const { bdm_assert ( isnamed(), "rvs are not assigned" ); Array > Cn ( Coms.length() ); for ( int i = 0; i < Coms.length(); i++ ) { Cn ( i ) = Coms ( i )->marginal ( rv ); } target._w() = w; target._Coms() = Cn; target.validate(); } shared_ptr emix::condition ( const RV &rv ) const { bdm_assert ( isnamed(), "rvs are not assigned" ); mratio *tmp = new mratio ( this, rv ); return shared_ptr ( tmp ); } void egiwmix::set_parameters ( const vec &w0, const Array &Coms0, bool copy ) { w = w0 / sum ( w0 ); dim = Coms0 ( 0 )->dimension(); int i; for ( i = 0; i < w.length(); i++ ) { bdm_assert_debug ( dim == ( Coms0 ( i )->dimension() ), "Component sizes do not match!" ); } if ( copy ) { Coms.set_length ( Coms0.length() ); for ( i = 0; i < w.length(); i++ ) { bdm_error ( "Not implemented" ); // *Coms ( i ) = *Coms0 ( i ); } destroyComs = true; } else { Coms = Coms0; destroyComs = false; } } vec egiwmix::sample() const { //Sample which component vec cumDist = cumsum ( w ); double u0; #pragma omp critical u0 = UniRNG.sample(); int i = 0; while ( ( cumDist ( i ) < u0 ) && ( i < ( w.length() - 1 ) ) ) { i++; } return Coms ( i )->sample(); } vec egiwmix::mean() const { int i; vec mu = zeros ( dim ); for ( i = 0; i < w.length(); i++ ) { mu += w ( i ) * Coms ( i )->mean(); } return mu; } vec egiwmix::variance() const { // non-central moment vec mom2 = zeros ( dim ); for ( int i = 0; i < w.length(); i++ ) { // pow is overloaded, we have to use another approach mom2 += w ( i ) * ( Coms ( i )->variance() + elem_mult ( Coms ( i )->mean(), Coms ( i )->mean() ) ); } // central moment // pow is overloaded, we have to use another approach return mom2 - elem_mult ( mean(), mean() ); } shared_ptr egiwmix::marginal ( const RV &rv ) const { emix *tmp = new emix(); shared_ptr narrow ( tmp ); marginal ( rv, *tmp ); return narrow; } void egiwmix::marginal ( const RV &rv, emix &target ) const { bdm_assert_debug ( isnamed(), "rvs are not assigned" ); Array > Cn ( Coms.length() ); for ( int i = 0; i < Coms.length(); i++ ) { Cn ( i ) = Coms ( i )->marginal ( rv ); } target._w() = w; target._Coms() = Cn; target.validate(); } egiw* egiwmix::approx() { // NB: dimx == 1 !!! // The following code might look a bit spaghetti-like, // consult Dedecius, K. et al.: Partial forgetting in AR models. double sumVecCommon; // common part for many terms in eq. int len = w.length(); // no. of mix components int dimLS = Coms ( 1 )->_V()._D().length() - 1; // dim of LS vec vecNu ( len ); // vector of dfms of components vec vecD ( len ); // vector of LS reminders of comps. vec vecCommon ( len ); // vector of common parts mat matVecsTheta; // matrix which rows are theta vects. // fill in the vectors vecNu, vecD and matVecsTheta for ( int i = 0; i < len; i++ ) { vecNu.shift_left ( Coms ( i )->_nu() ); vecD.shift_left ( Coms ( i )->_V()._D() ( 0 ) ); matVecsTheta.append_row ( Coms ( i )->est_theta() ); } // calculate the common parts and their sum vecCommon = elem_mult ( w, elem_div ( vecNu, vecD ) ); sumVecCommon = sum ( vecCommon ); // LS estimator of theta vec aprEstTheta ( dimLS ); aprEstTheta.zeros(); for ( int i = 0; i < len; i++ ) { aprEstTheta += matVecsTheta.get_row ( i ) * vecCommon ( i ); } aprEstTheta /= sumVecCommon; // LS estimator of dfm double aprNu; double A = log ( sumVecCommon ); // Term 'A' in equation for ( int i = 0; i < len; i++ ) { A += w ( i ) * ( log ( vecD ( i ) ) - psi ( 0.5 * vecNu ( i ) ) ); } aprNu = ( 1 + sqrt ( 1 + 2 * ( A - LOG2 ) / 3 ) ) / ( 2 * ( A - LOG2 ) ); // LS reminder (term D(0,0) in C-syntax) double aprD = aprNu / sumVecCommon; // Aproximation of cov // the following code is very numerically sensitive, thus // we have to eliminate decompositions etc. as much as possible mat aprC = zeros ( dimLS, dimLS ); for ( int i = 0; i < len; i++ ) { aprC += Coms ( i )->est_theta_cov().to_mat() * w ( i ); vec tmp = ( matVecsTheta.get_row ( i ) - aprEstTheta ); aprC += vecCommon ( i ) * outer_product ( tmp, tmp ); } // Construct GiW pdf :: BEGIN ldmat aprCinv ( inv ( aprC ) ); vec D = concat ( aprD, aprCinv._D() ); mat L = eye ( dimLS + 1 ); L.set_submatrix ( 1, 0, aprCinv._L() * aprEstTheta ); L.set_submatrix ( 1, 1, aprCinv._L() ); ldmat aprLD ( L, D ); egiw* aprgiw = new egiw ( 1, aprLD, aprNu ); return aprgiw; }; double mprod::evallogcond ( const vec &val, const vec &cond ) { int i; double res = 0.0; for ( i = pdfs.length() - 1; i >= 0; i-- ) { /* if ( pdfs(i)->_rvc().count() >0) { pdfs ( i )->condition ( dls ( i )->get_cond ( val,cond ) ); } // add logarithms res += epdfs ( i )->evallog ( dls ( i )->pushdown ( val ) );*/ res += pdfs ( i )->evallogcond ( dls ( i )->pushdown ( val ), dls ( i )->get_cond ( val, cond ) ); } return res; } vec mprod::evallogcond_mat ( const mat &Dt, const vec &cond ) { vec tmp ( Dt.cols() ); for ( int i = 0; i < Dt.cols(); i++ ) { tmp ( i ) = evallogcond ( Dt.get_col ( i ), cond ); } return tmp; } vec mprod::evallogcond_mat ( const Array &Dt, const vec &cond ) { vec tmp ( Dt.length() ); for ( int i = 0; i < Dt.length(); i++ ) { tmp ( i ) = evallogcond ( Dt ( i ), cond ); } return tmp; } void mprod::set_elements ( const Array > &mFacs ) { pdfs = mFacs; dls.set_size ( mFacs.length() ); rv = get_composite_rv ( pdfs, true ); dim = rv._dsize(); for ( int i = 0; i < pdfs.length(); i++ ) { RV rvx = pdfs ( i )->_rvc().subt ( rv ); rvc.add ( rvx ); // add rv to common rvc } dimc = rvc._dsize(); // rv and rvc established = > we can link them with pdfs for ( int i = 0; i < pdfs.length(); i++ ) { dls ( i ) = new datalink_m2m; dls ( i )->set_connection ( pdfs ( i )->_rv(), pdfs ( i )->_rvc(), _rv(), _rvc() ); } } void mmix::validate() { bdm_assert ( Coms.length() > 0, "There has to be at least one component." ); bdm_assert ( Coms.length() == w.length(), "It is obligatory to define weights of all the components." ); double sum_w = sum ( w ); bdm_assert ( sum_w != 0, "There has to be a component with non-zero weight." ); w = w / sum_w; int dim = Coms ( 0 )->dimension(); int dimc = Coms ( 0 )->dimensionc(); for ( int i = 1; i < Coms.length(); i++ ) { bdm_assert ( dim == ( Coms ( i )->dimension() ), "Component sizes do not match!" ); bdm_assert ( dimc == ( Coms ( i )->dimensionc() ), "Component sizes do not match!" ); bdm_assert ( Coms(i)->isnamed() , "An unnamed component is forbidden here!" ); } set_rv ( Coms ( 0 )->_rv() ); set_rvc ( Coms ( 0 )->_rvc() ); } void mmix::from_setting ( const Setting &set ) { UI::get ( Coms, set, "pdfs", UI::compulsory ); if ( !UI::get ( w, set, "weights", UI::optional ) ) { int len = Coms.length(); w.set_length ( len ); w = 1.0 / len; } } vec mmix::samplecond ( const vec &cond ) { //Sample which component vec cumDist = cumsum ( w ); double u0; #pragma omp critical u0 = UniRNG.sample(); int i = 0; while ( ( cumDist ( i ) < u0 ) && ( i < ( w.length() - 1 ) ) ) { i++; } return Coms ( i )->samplecond ( cond ); } vec eprod::mean() const { vec tmp ( dim ); for ( int i = 0; i < epdfs.length(); i++ ) { vec pom = epdfs ( i )->mean(); dls ( i )->pushup ( tmp, pom ); } return tmp; } vec eprod::variance() const { vec tmp ( dim ); //second moment for ( int i = 0; i < epdfs.length(); i++ ) { vec pom = epdfs ( i )->mean(); dls ( i )->pushup ( tmp, pow ( pom, 2 ) ); } return tmp - pow ( mean(), 2 ); } vec eprod::sample() const { vec tmp ( dim ); for ( int i = 0; i < epdfs.length(); i++ ) { vec pom = epdfs ( i )->sample(); dls ( i )->pushup ( tmp, pom ); } return tmp; } double eprod::evallog ( const vec &val ) const { double tmp = 0; for ( int i = 0; i < epdfs.length(); i++ ) { tmp += epdfs ( i )->evallog ( dls ( i )->pushdown ( val ) ); } bdm_assert_debug ( std::isfinite ( tmp ), "Infinite" ); return tmp; } } // mprod::mprod ( Array mFacs, bool overlap) : pdf ( RV(), RV() ), n ( mFacs.length() ), epdfs ( n ), pdfs ( mFacs ), rvinds ( n ), rvcinrv ( n ), irvcs_rvc ( n ) { // int i; // bool rvaddok; // // Create rv // for ( i = 0;i < n;i++ ) { // rvaddok=rv.add ( pdfs ( i )->_rv() ); //add rv to common rvs. // // If rvaddok==false, pdfs overlap => assert error. // epdfs ( i ) = & ( pdfs ( i )->posterior() ); // add pointer to epdf // }; // // Create rvc // for ( i = 0;i < n;i++ ) { // rvc.add ( pdfs ( i )->_rvc().subt ( rv ) ); //add rv to common rvs. // }; // // // independent = true; // //test rvc of pdfs and fill rvinds // for ( i = 0;i < n;i++ ) { // // find ith rv in common rv // rvsinrv ( i ) = pdfs ( i )->_rv().dataind ( rv ); // // find ith rvc in common rv // rvcinrv ( i ) = pdfs ( i )->_rvc().dataind ( rv ); // // find ith rvc in common rv // irvcs_rvc ( i ) = pdfs ( i )->_rvc().dataind ( rvc ); // // // /* if ( rvcinrv ( i ).length() >0 ) {independent = false;} // if ( irvcs_rvc ( i ).length() >0 ) {independent = false;}*/ // } // };