bdm::MPF Class Reference

Marginalized Particle filter. More...


Detailed Description

Marginalized Particle filter.

A composition of particle filter with exact (or almost exact) bayesian models (BMs). The Bayesian models provide marginalized predictive density. Internaly this is achieved by virtual class MPFmpdf.

#include <particles.h>

List of all members.

Classes

class  mpfepdf
 internal class for MPDF providing composition of eEmp with external components More...

Public Member Functions

 MPF ()
 Default constructor.
void set_parameters (shared_ptr< mpdf > par0, shared_ptr< mpdf > obs0, int n0, RESAMPLING_METHOD rm=SYSTEMATIC)
void set_BM (const BM &BMcond0)
void bayes (const vec &dt)
 Incremental Bayes rule.
const epdfposterior () const
void set_options (const string &opt)
const BM_BM (int i)
 Access function.
void from_setting (const Setting &set)
void validate ()
 This method TODO.
virtual string to_string ()
 This method returns a basic info about the current instance.
virtual void to_setting (Setting &set) const
 This method save all the instance properties into the Setting structure.
Constructors



virtual BM_copy_ () const
 Copy function required in vectors, Arrays of BM etc. Have to be DELETED manually! Prototype:.
Mathematical operations



virtual void bayesB (const mat &Dt)
 Batch Bayes rule (columns of Dt are observations).
virtual double logpred (const vec &dt) const
vec logpred_m (const mat &dt) const
 Matrix version of logpred.
virtual epdfepredictor () const
 Constructs a predictive density $ f(d_{t+1} |d_{t}, \ldots d_{0}) $.
virtual mpdfpredictor () const
 Constructs conditional density of 1-step ahead predictor $ f(d_{t+1} |d_{t+h-1}, \ldots d_{t}) $.
Access to attributes



const RV_drv () const
void set_drv (const RV &rv)
void set_rv (const RV &rv)
double _ll () const
void set_evalll (bool evl0)

Protected Attributes

shared_ptr< PFpf
Array< BM * > BMs
mpfepdf jest
 Density joining PF.est with conditional parts.
bool opt_L_mea
 Log means of BMs.
RV drv
 Random variable of the data (optional).
double ll
 Logarithm of marginalized data likelihood.
bool evalll
 If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time.

Extension to conditional BM

This extension is useful e.g. in Marginalized Particle Filter (bdm::MPF). Alternatively, it can be used for automated connection to DS when the condition is observed



const RV_rvc () const
 access function
virtual void condition (const vec &val)
 Substitute val for rvc.
RV rvc
 Name of extension variable.

Logging of results



virtual void log_add (logger &L, const string &name="")
 Add all logged variables to a logger.
virtual void logit (logger &L)
 Save results to the given logger, details of what is stored is configured by LIDs and options.
ivec LIDs
 IDs of storages in loggers 4:[1=mean,2=lb,3=ub,4=ll].
ivec LFlags
 Flags for logging - same size as LIDs, each entry correspond to the same in LIDs.

Member Function Documentation

virtual BM* bdm::BM::_copy_ (  )  const [inline, virtual, inherited]

Copy function required in vectors, Arrays of BM etc. Have to be DELETED manually! Prototype:.

 BM* _copy_() const {return new BM(*this);} 

Reimplemented in bdm::ARX, bdm::ARXfrg, bdm::KalmanFull, bdm::KalmanCh, bdm::EKFCh, and bdm::BMEF.

void bdm::MPF::bayes ( const vec &  dt  )  [virtual]

Incremental Bayes rule.

Parameters:
dt vector of input data

Implements bdm::BM.

References bdm::BM::condition().

void bdm::MPF::from_setting ( const Setting &  set  )  [inline, virtual]

configuration structure for basic PF

        BM              = BM_class;           // Bayesian filtr for analytical part of the model
        parameter_pdf   = mpdf_class;         // transitional pdf for non-parametric part of the model
        prior           = epdf_class;         // prior probability density
        --- optional ---
        n               = 10;                 // number of particles
        resmethod       = 'systematic', or 'multinomial', or 'stratified'
                                                                                  // resampling method

Reimplemented from bdm::BM.

References bdm::UI::get(), set_options(), and validate().

virtual double bdm::BM::logpred ( const vec &  dt  )  const [inline, virtual, inherited]

Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.

Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.

References bdm_error.

Referenced by bdm::BM::logpred_m().

void bdm::MPF::set_options ( const string &  opt  )  [inline, virtual]

Extends options understood by BM::set_options by option

  • logmeans - meaning

Reimplemented from bdm::BM.

References opt_L_mea.

Referenced by from_setting().


The documentation for this class was generated from the following files:

Generated on Mon Oct 12 19:37:21 2009 for mixpp by  doxygen 1.6.1