root/library/doc/html/exp__family_8h_source.html @ 590

Revision 472, 181.1 kB (checked in by mido, 15 years ago)

obnovena dokumentace, vcetne pridani mnoha novych doc-souboru do svn

Line 
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8">
3<title>mixpp: exp_family.h Source File</title>
4<link href="tabs.css" rel="stylesheet" type="text/css">
5<link href="doxygen.css" rel="stylesheet" type="text/css">
6</head><body>
7<!-- Generated by Doxygen 1.5.9 -->
8<script type="text/javascript">
9<!--
10function changeDisplayState (e){
11  var num=this.id.replace(/[^[0-9]/g,'');
12  var button=this.firstChild;
13  var sectionDiv=document.getElementById('dynsection'+num);
14  if (sectionDiv.style.display=='none'||sectionDiv.style.display==''){
15    sectionDiv.style.display='block';
16    button.src='open.gif';
17  }else{
18    sectionDiv.style.display='none';
19    button.src='closed.gif';
20  }
21}
22function initDynSections(){
23  var divs=document.getElementsByTagName('div');
24  var sectionCounter=1;
25  for(var i=0;i<divs.length-1;i++){
26    if(divs[i].className=='dynheader'&&divs[i+1].className=='dynsection'){
27      var header=divs[i];
28      var section=divs[i+1];
29      var button=header.firstChild;
30      if (button!='IMG'){
31        divs[i].insertBefore(document.createTextNode(' '),divs[i].firstChild);
32        button=document.createElement('img');
33        divs[i].insertBefore(button,divs[i].firstChild);
34      }
35      header.style.cursor='pointer';
36      header.onclick=changeDisplayState;
37      header.id='dynheader'+sectionCounter;
38      button.src='closed.gif';
39      section.id='dynsection'+sectionCounter;
40      section.style.display='none';
41      section.style.marginLeft='14px';
42      sectionCounter++;
43    }
44  }
45}
46window.onload = initDynSections;
47-->
48</script>
49<div class="navigation" id="top">
50  <div class="tabs">
51    <ul>
52      <li><a href="main.html"><span>Main&nbsp;Page</span></a></li>
53      <li><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
54      <li><a href="annotated.html"><span>Classes</span></a></li>
55      <li class="current"><a href="files.html"><span>Files</span></a></li>
56    </ul>
57  </div>
58  <div class="tabs">
59    <ul>
60      <li><a href="files.html"><span>File&nbsp;List</span></a></li>
61      <li><a href="globals.html"><span>File&nbsp;Members</span></a></li>
62    </ul>
63  </div>
64<h1>exp_family.h</h1><a href="exp__family_8h.html">Go to the documentation of this file.</a><div class="fragment"><pre class="fragment"><a name="l00001"></a>00001
65<a name="l00013"></a>00013 <span class="preprocessor">#ifndef EF_H</span>
66<a name="l00014"></a>00014 <span class="preprocessor"></span><span class="preprocessor">#define EF_H</span>
67<a name="l00015"></a>00015 <span class="preprocessor"></span>
68<a name="l00016"></a>00016
69<a name="l00017"></a>00017 <span class="preprocessor">#include "../shared_ptr.h"</span>
70<a name="l00018"></a>00018 <span class="preprocessor">#include "../base/bdmbase.h"</span>
71<a name="l00019"></a>00019 <span class="preprocessor">#include "../math/chmat.h"</span>
72<a name="l00020"></a>00020
73<a name="l00021"></a>00021 <span class="keyword">namespace </span>bdm
74<a name="l00022"></a>00022 {
75<a name="l00023"></a>00023
76<a name="l00024"></a>00024
77<a name="l00026"></a>00026         <span class="keyword">extern</span> Uniform_RNG UniRNG;
78<a name="l00028"></a>00028         <span class="keyword">extern</span> Normal_RNG NorRNG;
79<a name="l00030"></a>00030         <span class="keyword">extern</span> <a class="code" href="classitpp_1_1Gamma__RNG.html" title="Gamma distribution.">Gamma_RNG</a> GamRNG;
80<a name="l00031"></a>00031
81<a name="l00038"></a><a class="code" href="classbdm_1_1eEF.html">00038</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>
82<a name="l00039"></a>00039         {
83<a name="l00040"></a>00040                 <span class="keyword">public</span>:
84<a name="l00041"></a>00041 <span class="comment">//      eEF() :epdf() {};</span>
85<a name="l00043"></a><a class="code" href="classbdm_1_1eEF.html#d5459d472d0feca7cf1fb5f65c4b9ef4">00043</a> <span class="comment"></span>                        <a class="code" href="classbdm_1_1eEF.html#d5459d472d0feca7cf1fb5f65c4b9ef4" title="default constructor">eEF</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ) {};
86<a name="l00045"></a>00045                         <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>() <span class="keyword">const</span> =0;
87<a name="l00047"></a><a class="code" href="classbdm_1_1eEF.html#deef7d6273ba4d5a5cf0bbd91ec7277a">00047</a>                         <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEF.html#deef7d6273ba4d5a5cf0bbd91ec7277a" title="TODO decide if it is really needed.">dupdate</a> ( mat &amp;v ) {it_error ( <span class="stringliteral">"Not implemented"</span> );};
88<a name="l00049"></a><a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6">00049</a>                         <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( <span class="keyword">const</span> vec &amp;val )<span class="keyword"> const</span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;};
89<a name="l00051"></a><a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692">00051</a>                         <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692" title="Evaluate normalized log-probability.">evallog</a> ( <span class="keyword">const</span> vec &amp;val )<span class="keyword"> const </span>{
90<a name="l00052"></a>00052                                 <span class="keywordtype">double</span> tmp;
91<a name="l00053"></a>00053                                 tmp= <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( val )-<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>();
92<a name="l00054"></a>00054 <span class="comment">//                              it_assert_debug ( std::isfinite ( tmp ),"Infinite value" ); </span>
93<a name="l00055"></a>00055                                 <span class="keywordflow">return</span> tmp;}
94<a name="l00057"></a><a class="code" href="classbdm_1_1eEF.html#79a7c8ea8c02e45d410bd1d7ffd72b41">00057</a>                         <span class="keyword">virtual</span> vec <a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692" title="Evaluate normalized log-probability.">evallog</a> ( <span class="keyword">const</span> mat &amp;Val )<span class="keyword"> const</span>
95<a name="l00058"></a>00058 <span class="keyword">                        </span>{
96<a name="l00059"></a>00059                                 vec x ( Val.cols() );
97<a name="l00060"></a>00060                                 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i&lt;Val.cols();i++ ) {x ( i ) =<a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( Val.get_col ( i ) ) ;}
98<a name="l00061"></a>00061                                 <span class="keywordflow">return</span> x-<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>();
99<a name="l00062"></a>00062                         }
100<a name="l00064"></a><a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053">00064</a>                         <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053" title="Power of the density, used e.g. to flatten the density.">pow</a> ( <span class="keywordtype">double</span> p ) {it_error ( <span class="stringliteral">"Not implemented"</span> );};
101<a name="l00065"></a>00065         };
102<a name="l00066"></a>00066
103<a name="l00073"></a><a class="code" href="classbdm_1_1mEF.html">00073</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>
104<a name="l00074"></a>00074         {
105<a name="l00075"></a>00075
106<a name="l00076"></a>00076                 <span class="keyword">public</span>:
107<a name="l00078"></a><a class="code" href="classbdm_1_1mEF.html#dd7caad7026b778af66e34480eec6f9e">00078</a>                         <a class="code" href="classbdm_1_1mEF.html#dd7caad7026b778af66e34480eec6f9e" title="Default constructor.">mEF</a> ( ) :<a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> ( ) {};
108<a name="l00079"></a>00079         };
109<a name="l00080"></a>00080
110<a name="l00082"></a><a class="code" href="classbdm_1_1BMEF.html">00082</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a>
111<a name="l00083"></a>00083         {
112<a name="l00084"></a>00084                 <span class="keyword">protected</span>:
113<a name="l00086"></a><a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64">00086</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;
114<a name="l00088"></a><a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865">00088</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;
115<a name="l00089"></a>00089                 <span class="keyword">public</span>:
116<a name="l00091"></a><a class="code" href="classbdm_1_1BMEF.html#2def512872ed8a4fc3b702371ec0be55">00091</a>                         <a class="code" href="classbdm_1_1BMEF.html#2def512872ed8a4fc3b702371ec0be55" title="Default constructor (=empty constructor).">BMEF</a> ( <span class="keywordtype">double</span> frg0=1.0 ) :<a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> ( ), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ( frg0 ) {}
117<a name="l00093"></a><a class="code" href="classbdm_1_1BMEF.html#9662379513101405e159e76717104e62">00093</a>                         <a class="code" href="classbdm_1_1BMEF.html#9662379513101405e159e76717104e62" title="Copy constructor.">BMEF</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> &amp;B ) :<a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> ( B ), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ( B.<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ), <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> ( B.<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> ) {}
118<a name="l00095"></a><a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051">00095</a>                         <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051" title="get statistics from another model">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* BM0 ) {it_error ( <span class="stringliteral">"Not implemented"</span> );};
119<a name="l00097"></a><a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6">00097</a>                         <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> ( <span class="keyword">const</span> vec &amp;data, <span class="keyword">const</span> <span class="keywordtype">double</span> w ) {};
120<a name="l00098"></a>00098                         <span class="comment">//original Bayes</span>
121<a name="l00099"></a>00099                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> ( <span class="keyword">const</span> vec &amp;dt );
122<a name="l00101"></a><a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749">00101</a>                         <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> * B ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}
123<a name="l00103"></a>00103 <span class="comment">//      virtual void flatten ( double nu0 ) {it_error ( "Not implemented" );}</span>
124<a name="l00104"></a>00104
125<a name="l00105"></a><a class="code" href="classbdm_1_1BMEF.html#62d2e4691bed41a1efa6b9c2e35e5c67">00105</a>                         <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* <a class="code" href="classbdm_1_1BMEF.html#62d2e4691bed41a1efa6b9c2e35e5c67" title="Flatten the posterior as if to keep nu0 data.">_copy_</a> ()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"function _copy_ not implemented for this BM"</span> ); <span class="keywordflow">return</span> NULL;};
126<a name="l00106"></a>00106         };
127<a name="l00107"></a>00107
128<a name="l00108"></a>00108         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
129<a name="l00109"></a>00109         <span class="keyword">class </span>mlnorm;
130<a name="l00110"></a>00110
131<a name="l00116"></a>00116         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
132<a name="l00117"></a><a class="code" href="classbdm_1_1enorm.html">00117</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>
133<a name="l00118"></a>00118         {
134<a name="l00119"></a>00119                 <span class="keyword">protected</span>:
135<a name="l00121"></a><a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7">00121</a>                         vec <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>;
136<a name="l00123"></a><a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2">00123</a>                         sq_T <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;
137<a name="l00124"></a>00124                 <span class="keyword">public</span>:
138<a name="l00127"></a>00127
139<a name="l00128"></a>00128                         <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> ( ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ), <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( ),<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> ( ) {};
140<a name="l00129"></a>00129                         <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> ( <span class="keyword">const</span> vec &amp;<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>,<span class="keyword">const</span> sq_T &amp;<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> ) {set_parameters ( mu,R );}
141<a name="l00130"></a>00130                         <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &amp;<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>,<span class="keyword">const</span> sq_T &amp;<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> );
142<a name="l00131"></a>00131                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#61bd470764020bea6e1ed35000f259e6">from_setting</a>(<span class="keyword">const</span> Setting &amp;root);
143<a name="l00132"></a><a class="code" href="classbdm_1_1enorm.html#38eb17ecb75d94a50b6782fcf735cfea">00132</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#38eb17ecb75d94a50b6782fcf735cfea" title="This method TODO.">validate</a>() {
144<a name="l00133"></a>00133                                 it_assert(<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>.length()==<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows(),<span class="stringliteral">"parameters mismatch"</span>);
145<a name="l00134"></a>00134                                 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>.length();
146<a name="l00135"></a>00135                         }
147<a name="l00137"></a>00137
148<a name="l00140"></a>00140
149<a name="l00142"></a>00142                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2" title="dupdate in exponential form (not really handy)">dupdate</a> ( mat &amp;v,<span class="keywordtype">double</span> nu=1.0 );
150<a name="l00143"></a>00143
151<a name="l00144"></a>00144                         vec <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample,  from density .">sample</a>() <span class="keyword">const</span>;
152<a name="l00145"></a>00145
153<a name="l00146"></a>00146                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">evallog_nn</a> ( <span class="keyword">const</span> vec &amp;val ) <span class="keyword">const</span>;
154<a name="l00147"></a>00147                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>;
155<a name="l00148"></a><a class="code" href="classbdm_1_1enorm.html#b2fa2915c35366392fe9bb022ca1a600">00148</a>                         vec <a class="code" href="classbdm_1_1enorm.html#b2fa2915c35366392fe9bb022ca1a600" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>;}
156<a name="l00149"></a><a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773">00149</a>                         vec <a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> diag ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.to_mat() );}
157<a name="l00150"></a>00150 <span class="comment">//      mlnorm&lt;sq_T&gt;* condition ( const RV &amp;rvn ) const ; &lt;=========== fails to cmpile. Why?</span>
158<a name="l00151"></a>00151                         <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>* <a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn ) <span class="keyword">const</span> ;
159<a name="l00152"></a>00152                         <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a>* <a class="code" href="classbdm_1_1enorm.html#c2996bdaffad38fbe0fc776db54c9d80" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ) <span class="keyword">const</span>;
160<a name="l00153"></a>00153 <span class="comment">//                      epdf* marginal ( const RV &amp;rv ) const;</span>
161<a name="l00155"></a>00155 <span class="comment"></span>
162<a name="l00158"></a>00158
163<a name="l00159"></a>00159                         vec&amp; _mu() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>;}
164<a name="l00160"></a>00160                         <span class="keywordtype">void</span> set_mu ( <span class="keyword">const</span> vec mu0 ) { <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>=mu0;}
165<a name="l00161"></a>00161                         sq_T&amp; _R() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;}
166<a name="l00162"></a>00162                         <span class="keyword">const</span> sq_T&amp; _R()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;}
167<a name="l00164"></a>00164
168<a name="l00165"></a>00165         };
169<a name="l00166"></a>00166         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(enorm&lt;chmat&gt;);
170<a name="l00167"></a>00167         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(enorm&lt;ldmat&gt;);
171<a name="l00168"></a>00168         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(enorm&lt;fsqmat&gt;);
172<a name="l00169"></a>00169
173<a name="l00170"></a>00170
174<a name="l00177"></a><a class="code" href="classbdm_1_1egiw.html">00177</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>
175<a name="l00178"></a>00178         {
176<a name="l00179"></a>00179                 <span class="keyword">protected</span>:
177<a name="l00181"></a><a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52">00181</a>                         <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>;
178<a name="l00183"></a><a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4">00183</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;
179<a name="l00185"></a><a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a">00185</a>                         <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>;
180<a name="l00187"></a><a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd">00187</a>                         <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a>;
181<a name="l00188"></a>00188                 <span class="keyword">public</span>:
182<a name="l00191"></a>00191                         <a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a>() :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>() {};
183<a name="l00192"></a>00192                         <a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> ( <span class="keywordtype">int</span> dimx0, <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> V0, <span class="keywordtype">double</span> nu0=-1.0 ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>() {set_parameters ( dimx0,V0, nu0 );};
184<a name="l00193"></a>00193
185<a name="l00194"></a>00194                         <span class="keywordtype">void</span> set_parameters ( <span class="keywordtype">int</span> dimx0, <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> V0, <span class="keywordtype">double</span> nu0=-1.0 )
186<a name="l00195"></a>00195                         {
187<a name="l00196"></a>00196                                 <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>=dimx0;
188<a name="l00197"></a>00197                                 <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> = V0.<a class="code" href="classsqmat.html#071e80ced9cc3b8cbb360fa7462eb646" title="Reimplementing common functions of mat: rows().">rows</a>()-<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>;
189<a name="l00198"></a>00198                                 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>* ( <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>+<a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> ); <span class="comment">// size(R) + size(Theta)</span>
190<a name="l00199"></a>00199
191<a name="l00200"></a>00200                                 <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>=V0;
192<a name="l00201"></a>00201                                 <span class="keywordflow">if</span> ( nu0&lt;0 )
193<a name="l00202"></a>00202                                 {
194<a name="l00203"></a>00203                                         <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> = 0.1 +<a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> +2*<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a> +2; <span class="comment">// +2 assures finite expected value of R</span>
195<a name="l00204"></a>00204                                         <span class="comment">// terms before that are sufficient for finite normalization</span>
196<a name="l00205"></a>00205                                 }
197<a name="l00206"></a>00206                                 <span class="keywordflow">else</span>
198<a name="l00207"></a>00207                                 {
199<a name="l00208"></a>00208                                         <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>=nu0;
200<a name="l00209"></a>00209                                 }
201<a name="l00210"></a>00210                         }
202<a name="l00212"></a>00212
203<a name="l00213"></a>00213                         vec <a class="code" href="classbdm_1_1egiw.html#920f21548b7a3723923dd108fe514c61" title="Returns a sample,  from density .">sample</a>() <span class="keyword">const</span>;
204<a name="l00214"></a>00214                         vec <a class="code" href="classbdm_1_1egiw.html#df70c05f918c3a6f86d60f10c1fd6ba2" title="return expected value">mean</a>() <span class="keyword">const</span>;
205<a name="l00215"></a>00215                         vec <a class="code" href="classbdm_1_1egiw.html#c1ecc406613cc2341225dc10c3d3b46a" title="return expected variance (not covariance!)">variance</a>() <span class="keyword">const</span>;
206<a name="l00216"></a>00216
207<a name="l00218"></a>00218                         vec <a class="code" href="classbdm_1_1egiw.html#66d2ba9295c306012b309efcc9e516f0" title="LS estimate of .">est_theta</a>() <span class="keyword">const</span>;
208<a name="l00219"></a>00219
209<a name="l00221"></a>00221                         <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1egiw.html#88c321a2051d1afdbb31a098896a717b" title="Covariance of the LS estimate.">est_theta_cov</a>() <span class="keyword">const</span>;
210<a name="l00222"></a>00222
211<a name="l00223"></a>00223                         <span class="keywordtype">void</span> mean_mat ( mat &amp;M, mat&amp;R ) <span class="keyword">const</span>;
212<a name="l00225"></a>00225                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#bfb8e7c619b34ad804a73bff71742b5e" title="In this instance, val= [theta, r]. For multivariate instances, it is stored columnwise...">evallog_nn</a> ( <span class="keyword">const</span> vec &amp;val ) <span class="keyword">const</span>;
213<a name="l00226"></a>00226                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#41d72ba7b2abc8a9a4209ffa98ed5633" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>;
214<a name="l00227"></a><a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be">00227</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be" title="Power of the density, used e.g. to flatten the density.">pow</a> ( <span class="keywordtype">double</span> p ) {V*=p;<a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>*=p;};
215<a name="l00228"></a>00228
216<a name="l00231"></a>00231
217<a name="l00232"></a>00232                         <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>&amp; _V() {<span class="keywordflow">return</span> V;}
218<a name="l00233"></a>00233                         <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>&amp; _V()<span class="keyword"> const </span>{<span class="keywordflow">return</span> V;}
219<a name="l00234"></a>00234                         <span class="keywordtype">double</span>&amp; _nu()  {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;}
220<a name="l00235"></a>00235                         <span class="keyword">const</span> <span class="keywordtype">double</span>&amp; _nu()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;}
221<a name="l00236"></a><a class="code" href="classbdm_1_1egiw.html#55b76ec75bd2df5ef9cab3be20a33bbb">00236</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#55b76ec75bd2df5ef9cab3be20a33bbb">from_setting</a>(<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>){
222<a name="l00237"></a>00237                                 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a>(<a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>,<span class="keyword">set</span>,<span class="stringliteral">"nu"</span>);
223<a name="l00238"></a>00238                                 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a>(<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>,<span class="keyword">set</span>,<span class="stringliteral">"dimx"</span>);
224<a name="l00239"></a>00239                                 <span class="keyword">set</span>.lookupValue(<span class="stringliteral">"nu"</span>,<a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>);
225<a name="l00240"></a>00240                                 <span class="keyword">set</span>.lookupValue(<span class="stringliteral">"dimx"</span>,<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>);
226<a name="l00241"></a>00241                                 mat V;
227<a name="l00242"></a>00242                                 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a>(V,<span class="keyword">set</span>,<span class="stringliteral">"V"</span>, UI::compulsory);
228<a name="l00243"></a>00243                                 set_parameters(<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>, V, <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>);
229<a name="l00244"></a>00244                                 <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a>* <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>=UI::build&lt;RV&gt;(<span class="keyword">set</span>,<span class="stringliteral">"rv"</span>, UI::compulsory);
230<a name="l00245"></a>00245                                 <a class="code" href="classbdm_1_1epdf.html#f423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a>(*rv);
231<a name="l00246"></a>00246                                 <span class="keyword">delete</span> rv;
232<a name="l00247"></a>00247                         }
233<a name="l00249"></a>00249         };
234<a name="l00250"></a>00250         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(egiw);
235<a name="l00251"></a>00251
236<a name="l00260"></a><a class="code" href="classbdm_1_1eDirich.html">00260</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>
237<a name="l00261"></a>00261         {
238<a name="l00262"></a>00262                 <span class="keyword">protected</span>:
239<a name="l00264"></a><a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2">00264</a>                         vec <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>;
240<a name="l00265"></a>00265                 <span class="keyword">public</span>:
241<a name="l00268"></a>00268
242<a name="l00269"></a>00269                         <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> () : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ) {};
243<a name="l00270"></a>00270                         <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> &amp;D0 ) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> () {set_parameters ( D0.<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> );};
244<a name="l00271"></a>00271                         eDirich ( <span class="keyword">const</span> vec &amp;beta0 ) {set_parameters ( beta0 );};
245<a name="l00272"></a>00272                         <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &amp;beta0 )
246<a name="l00273"></a>00273                         {
247<a name="l00274"></a>00274                                 <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>= beta0;
248<a name="l00275"></a>00275                                 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length();
249<a name="l00276"></a>00276                         }
250<a name="l00278"></a>00278
251<a name="l00279"></a><a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc">00279</a>                         vec <a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> vec_1 ( 0.0 );};
252<a name="l00280"></a><a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6">00280</a>                         vec <a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>/sum(<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>);};
253<a name="l00281"></a><a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc">00281</a>                         vec <a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordtype">double</span> gamma =sum(<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>); <span class="keywordflow">return</span> elem_mult ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>, ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>+1 ) ) / ( gamma* ( gamma+1 ) );}
254<a name="l00283"></a><a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318">00283</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318" title="In this instance, val is ...">evallog_nn</a> ( <span class="keyword">const</span> vec &amp;val )<span class="keyword"> const</span>
255<a name="l00284"></a>00284 <span class="keyword">                        </span>{
256<a name="l00285"></a>00285                                 <span class="keywordtype">double</span> tmp; tmp= ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>-1 ) *log ( val );
257<a name="l00286"></a>00286 <span class="comment">//                              it_assert_debug ( std::isfinite ( tmp ),"Infinite value" );</span>
258<a name="l00287"></a>00287                                 <span class="keywordflow">return</span> tmp;
259<a name="l00288"></a>00288                         };
260<a name="l00289"></a><a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2">00289</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a> ()<span class="keyword"> const</span>
261<a name="l00290"></a>00290 <span class="keyword">                        </span>{
262<a name="l00291"></a>00291                                 <span class="keywordtype">double</span> tmp;
263<a name="l00292"></a>00292                                 <span class="keywordtype">double</span> gam=sum ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> );
264<a name="l00293"></a>00293                                 <span class="keywordtype">double</span> lgb=0.0;
265<a name="l00294"></a>00294                                 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i&lt;<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length();i++ ) {lgb+=lgamma ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ( i ) );}
266<a name="l00295"></a>00295                                 tmp= lgb-lgamma ( gam );
267<a name="l00296"></a>00296 <span class="comment">//                              it_assert_debug ( std::isfinite ( tmp ),"Infinite value" );</span>
268<a name="l00297"></a>00297                                 <span class="keywordflow">return</span> tmp;
269<a name="l00298"></a>00298                         };
270<a name="l00300"></a><a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324">00300</a>                         vec&amp; <a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>()  {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>;}
271<a name="l00302"></a>00302         };
272<a name="l00303"></a>00303
273<a name="l00305"></a><a class="code" href="classbdm_1_1multiBM.html">00305</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>
274<a name="l00306"></a>00306         {
275<a name="l00307"></a>00307                 <span class="keyword">protected</span>:
276<a name="l00309"></a><a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a">00309</a>                         <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;
277<a name="l00311"></a><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25">00311</a>                         vec &amp;<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;
278<a name="l00312"></a>00312                 <span class="keyword">public</span>:
279<a name="l00314"></a><a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf">00314</a>                         <a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf" title="Default constructor.">multiBM</a> ( ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() )
280<a name="l00315"></a>00315                         {
281<a name="l00316"></a>00316                                 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>.length() &gt;0 ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();}
282<a name="l00317"></a>00317                                 <span class="keywordflow">else</span>{<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=0.0;}
283<a name="l00318"></a>00318                         }
284<a name="l00320"></a><a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31">00320</a>                         <a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31" title="Copy constructor.">multiBM</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> &amp;B ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( B ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( B.<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() ) {}
285<a name="l00322"></a><a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52">00322</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52" title="Sets sufficient statistics to match that of givefrom mB0.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a>* mB0 ) {<span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* mB=<span class="keyword">dynamic_cast&lt;</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">&gt;</span> ( mB0 ); <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>=mB-&gt;<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;}
286<a name="l00323"></a><a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95">00323</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95" title="Incremental Bayes rule.">bayes</a> ( <span class="keyword">const</span> vec &amp;dt )
287<a name="l00324"></a>00324                         {
288<a name="l00325"></a>00325                                 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>&lt;1.0 ) {<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();}
289<a name="l00326"></a>00326                                 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>+=dt;
290<a name="l00327"></a>00327                                 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BM.html#4064b6559d962633e4372b12f4cd204a" title="Logarithm of marginalized data likelihood.">ll</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;}
291<a name="l00328"></a>00328                         }
292<a name="l00329"></a><a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">00329</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">logpred</a> ( <span class="keyword">const</span> vec &amp;dt )<span class="keyword"> const</span>
293<a name="l00330"></a>00330 <span class="keyword">                        </span>{
294<a name="l00331"></a>00331                                 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> pred ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> );
295<a name="l00332"></a>00332                                 vec &amp;<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> = pred.<a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>();
296<a name="l00333"></a>00333
297<a name="l00334"></a>00334                                 <span class="keywordtype">double</span> lll;
298<a name="l00335"></a>00335                                 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>&lt;1.0 )
299<a name="l00336"></a>00336                                         {beta*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();}
300<a name="l00337"></a>00337                                 <span class="keywordflow">else</span>
301<a name="l00338"></a>00338                                         <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {lll=<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;}
302<a name="l00339"></a>00339                                         <span class="keywordflow">else</span>{lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();}
303<a name="l00340"></a>00340
304<a name="l00341"></a>00341                                 beta+=dt;
305<a name="l00342"></a>00342                                 <span class="keywordflow">return</span> pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-lll;
306<a name="l00343"></a>00343                         }
307<a name="l00344"></a><a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732">00344</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* B )
308<a name="l00345"></a>00345                         {
309<a name="l00346"></a>00346                                 <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* E=<span class="keyword">dynamic_cast&lt;</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">&gt;</span> ( B );
310<a name="l00347"></a>00347                                 <span class="comment">// sum(beta) should be equal to sum(B.beta)</span>
311<a name="l00348"></a>00348                                 <span class="keyword">const</span> vec &amp;Eb=E-&gt;<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;<span class="comment">//const_cast&lt;multiBM*&gt; ( E )-&gt;_beta();</span>
312<a name="l00349"></a>00349                                 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*= ( sum ( Eb ) /sum ( <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ) );
313<a name="l00350"></a>00350                                 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();}
314<a name="l00351"></a>00351                         }
315<a name="l00352"></a>00352                         <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>&amp; posterior()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;};
316<a name="l00353"></a>00353                         <span class="keyword">const</span> eDirich* _e()<span class="keyword"> const </span>{<span class="keywordflow">return</span> &amp;<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;};
317<a name="l00354"></a>00354                         <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &amp;beta0 )
318<a name="l00355"></a>00355                         {
319<a name="l00356"></a>00356                                 <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.set_parameters ( beta0 );
320<a name="l00357"></a>00357                                 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.lognc();}
321<a name="l00358"></a>00358                         }
322<a name="l00359"></a>00359         };
323<a name="l00360"></a>00360
324<a name="l00370"></a><a class="code" href="classbdm_1_1egamma.html">00370</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>
325<a name="l00371"></a>00371         {
326<a name="l00372"></a>00372                 <span class="keyword">protected</span>:
327<a name="l00374"></a><a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa">00374</a>                         vec <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>;
328<a name="l00376"></a><a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1">00376</a>                         vec <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>;
329<a name="l00377"></a>00377                 <span class="keyword">public</span> :
330<a name="l00380"></a>00380                         <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> ( ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ), <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a> ( 0 ), <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a> ( 0 ) {};
331<a name="l00381"></a>00381                         <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> ( <span class="keyword">const</span> vec &amp;a, <span class="keyword">const</span> vec &amp;b ) {set_parameters ( a, b );};
332<a name="l00382"></a>00382                         <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &amp;a, <span class="keyword">const</span> vec &amp;b ) {<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>=a,<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>=b;<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length();};
333<a name="l00384"></a>00384
334<a name="l00385"></a>00385                         vec <a class="code" href="classbdm_1_1egamma.html#6ed82f0fd05f6002487256d8e75a0bbd" title="Returns a sample,  from density .">sample</a>() <span class="keyword">const</span>;
335<a name="l00387"></a>00387 <span class="comment">//      mat sample ( int N ) const;</span>
336<a name="l00388"></a>00388                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#a8e11e5a580ff42a1b205974c60768c6" title="TODO: is it used anywhere?">evallog</a> ( <span class="keyword">const</span> vec &amp;val ) <span class="keyword">const</span>;
337<a name="l00389"></a>00389                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#9a66cbd100e8520c769ccb3c451f86f8" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>;
338<a name="l00391"></a><a class="code" href="classbdm_1_1egamma.html#0865cb3d6339fdc7410806cf70a329ed">00391</a>                         vec&amp; <a class="code" href="classbdm_1_1egamma.html#0865cb3d6339fdc7410806cf70a329ed" title="Returns poiter to alpha and beta. Potentially dengerous: use with care!">_alpha</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>;}
339<a name="l00392"></a>00392                         vec&amp; _beta() {<span class="keywordflow">return</span> beta;}
340<a name="l00393"></a><a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85">00393</a>                         vec <a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div ( <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>,beta );}
341<a name="l00394"></a><a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1">00394</a>                         vec <a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div ( <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>,elem_mult ( beta,beta ) ); }
342<a name="l00395"></a>00395                         
343<a name="l00404"></a><a class="code" href="classbdm_1_1egamma.html#8a6fd1a1c0190f3e0d95a2a1f99aafc1">00404</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egamma.html#8a6fd1a1c0190f3e0d95a2a1f99aafc1">from_setting</a>(<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>){
344<a name="l00405"></a>00405                                 <a class="code" href="classbdm_1_1egamma.html#8a6fd1a1c0190f3e0d95a2a1f99aafc1">epdf::from_setting</a>(<span class="keyword">set</span>); <span class="comment">// reads rv</span>
345<a name="l00406"></a>00406                                 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a>(<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>,<span class="keyword">set</span>,<span class="stringliteral">"alpha"</span>, UI::compulsory);
346<a name="l00407"></a>00407                                 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a>(beta,<span class="keyword">set</span>,<span class="stringliteral">"beta"</span>, UI::compulsory);
347<a name="l00408"></a>00408                                 <a class="code" href="classbdm_1_1egamma.html#c3a8d8ae8ba79d0fb35036711fa7d127" title="This method TODO.">validate</a>();
348<a name="l00409"></a>00409                         }
349<a name="l00410"></a><a class="code" href="classbdm_1_1egamma.html#c3a8d8ae8ba79d0fb35036711fa7d127">00410</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egamma.html#c3a8d8ae8ba79d0fb35036711fa7d127" title="This method TODO.">validate</a>(){
350<a name="l00411"></a>00411                                 it_assert(<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length() ==beta.length(), <span class="stringliteral">"parameters do not match"</span>);
351<a name="l00412"></a>00412                                 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> =<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length();
352<a name="l00413"></a>00413                         }
353<a name="l00414"></a>00414         };
354<a name="l00415"></a>00415 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(egamma);
355<a name="l00432"></a><a class="code" href="classbdm_1_1eigamma.html">00432</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a>
356<a name="l00433"></a>00433         {
357<a name="l00434"></a>00434                 <span class="keyword">protected</span>:
358<a name="l00435"></a>00435                 <span class="keyword">public</span> :
359<a name="l00440"></a>00440
360<a name="l00441"></a><a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f">00441</a>                         vec <a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> 1.0/<a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample,  from density .">egamma::sample</a>();};
361<a name="l00443"></a><a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb">00443</a>                         vec <a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div ( <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>,<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>-1 );}
362<a name="l00444"></a><a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133">00444</a>                         vec <a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{vec mea=<a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>(); <span class="keywordflow">return</span> elem_div ( elem_mult ( mea,mea ),<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>-2 );}
363<a name="l00445"></a>00445         };
364<a name="l00446"></a>00446         <span class="comment">/*</span>
365<a name="l00448"></a>00448 <span class="comment">        class emix : public epdf {</span>
366<a name="l00449"></a>00449 <span class="comment">        protected:</span>
367<a name="l00450"></a>00450 <span class="comment">                int n;</span>
368<a name="l00451"></a>00451 <span class="comment">                vec &amp;w;</span>
369<a name="l00452"></a>00452 <span class="comment">                Array&lt;epdf*&gt; Coms;</span>
370<a name="l00453"></a>00453 <span class="comment">        public:</span>
371<a name="l00455"></a>00455 <span class="comment">                emix ( const RV &amp;rv, vec &amp;w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};</span>
372<a name="l00456"></a>00456 <span class="comment">                void set_parameters( int &amp;i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}</span>
373<a name="l00457"></a>00457 <span class="comment">                vec mean(){vec pom; for(int i=0;i&lt;n;i++){pom+=Coms(i)-&gt;mean()*w(i);} return pom;};</span>
374<a name="l00458"></a>00458 <span class="comment">                vec sample() {it_error ( "Not implemented" );return 0;}</span>
375<a name="l00459"></a>00459 <span class="comment">        };</span>
376<a name="l00460"></a>00460 <span class="comment">        */</span>
377<a name="l00461"></a>00461
378<a name="l00463"></a>00463
379<a name="l00464"></a><a class="code" href="classbdm_1_1euni.html">00464</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>
380<a name="l00465"></a>00465         {
381<a name="l00466"></a>00466                 <span class="keyword">protected</span>:
382<a name="l00468"></a><a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32">00468</a>                         vec <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>;
383<a name="l00470"></a><a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1">00470</a>                         vec <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>;
384<a name="l00472"></a><a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c">00472</a>                         vec <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>;
385<a name="l00474"></a><a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20">00474</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>;
386<a name="l00476"></a><a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476">00476</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>;
387<a name="l00477"></a>00477                 <span class="keyword">public</span>:
388<a name="l00480"></a>00480                         <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ) {}
389<a name="l00481"></a>00481                         <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> ( <span class="keyword">const</span> vec &amp;low0, <span class="keyword">const</span> vec &amp;high0 ) {set_parameters ( low0,high0 );}
390<a name="l00482"></a>00482                         <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &amp;low0, <span class="keyword">const</span> vec &amp;high0 )
391<a name="l00483"></a>00483                         {
392<a name="l00484"></a>00484                                 <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> = high0-low0;
393<a name="l00485"></a>00485                                 it_assert_debug ( min ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> ) &gt;0.0,<span class="stringliteral">"bad support"</span> );
394<a name="l00486"></a>00486                                 <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> = low0;
395<a name="l00487"></a>00487                                 <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a> = high0;
396<a name="l00488"></a>00488                                 <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> = prod ( 1.0/<a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> );
397<a name="l00489"></a>00489                                 <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a> = log ( <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> );
398<a name="l00490"></a>00490                                 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>.length();
399<a name="l00491"></a>00491                         }
400<a name="l00493"></a>00493
401<a name="l00494"></a>00494                         <span class="keywordtype">double</span> eval ( <span class="keyword">const</span> vec &amp;val )<span class="keyword"> const  </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>;}
402<a name="l00495"></a><a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81">00495</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81">evallog</a> ( <span class="keyword">const</span> vec &amp;val )<span class="keyword"> const  </span>{
403<a name="l00496"></a>00496                                 <span class="keywordflow">if</span> (any(val&lt;<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>) &amp;&amp; any(val&gt;<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>)) {<span class="keywordflow">return</span> inf;}
404<a name="l00497"></a>00497                                 <span class="keywordflow">else</span> <span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>;
405<a name="l00498"></a>00498                         }
406<a name="l00499"></a><a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194">00499</a>                         vec <a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const</span>
407<a name="l00500"></a>00500 <span class="keyword">                        </span>{
408<a name="l00501"></a>00501                                 vec smp ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> );
409<a name="l00502"></a>00502 <span class="preprocessor">#pragma omp critical</span>
410<a name="l00503"></a>00503 <span class="preprocessor"></span>                                UniRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ,smp );
411<a name="l00504"></a>00504                                 <span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>+elem_mult ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>,smp );
412<a name="l00505"></a>00505                         }
413<a name="l00507"></a><a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226">00507</a>                         vec <a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226" title="set values of low and high ">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>-<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> ) /2.0;}
414<a name="l00508"></a><a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c">00508</a>                         vec <a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> ( pow ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,2 ) +pow ( <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>,2 ) +elem_mult ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> ) ) /3.0;}
415<a name="l00517"></a><a class="code" href="classbdm_1_1euni.html#77f5fef1f006fe056066da23b9e5f042">00517</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1euni.html#77f5fef1f006fe056066da23b9e5f042">from_setting</a>(<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>){
416<a name="l00518"></a>00518                                 <a class="code" href="classbdm_1_1euni.html#77f5fef1f006fe056066da23b9e5f042">epdf::from_setting</a>(<span class="keyword">set</span>); <span class="comment">// reads rv and rvc</span>
417<a name="l00519"></a>00519
418<a name="l00520"></a>00520                                 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a>(<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,<span class="keyword">set</span>,<span class="stringliteral">"high"</span>, UI::compulsory);
419<a name="l00521"></a>00521                                 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a>(<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>,<span class="keyword">set</span>,<span class="stringliteral">"low"</span>, UI::compulsory);
420<a name="l00522"></a>00522                         }
421<a name="l00523"></a>00523         };
422<a name="l00524"></a>00524
423<a name="l00525"></a>00525
424<a name="l00531"></a>00531         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
425<a name="l00532"></a><a class="code" href="classbdm_1_1mlnorm.html">00532</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a>
426<a name="l00533"></a>00533         {
427<a name="l00534"></a>00534                 <span class="keyword">protected</span>:
428<a name="l00536"></a><a class="code" href="classbdm_1_1mlnorm.html#6de45ab731143e70a94318df586c36ba">00536</a>                         <a class="code" href="classbdm_1_1shared__ptr.html" title="A naive implementation of roughly a subset of the std::tr1:shared_ptr spec (really...">shared_ptr&lt;enorm&lt;sq_T&gt;</a> &gt; <a class="code" href="classbdm_1_1mlnorm.html#6de45ab731143e70a94318df586c36ba" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>;
429<a name="l00537"></a>00537                         mat A;
430<a name="l00538"></a>00538                         vec mu_const;
431<a name="l00539"></a>00539                         vec&amp; _mu; <span class="comment">//cached epdf.mu;</span>
432<a name="l00540"></a>00540                 <span class="keyword">public</span>:
433<a name="l00543"></a>00543                         <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a>():<a class="code" href="classbdm_1_1mlnorm.html#6de45ab731143e70a94318df586c36ba" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>(new <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a>&lt;sq_T&gt;()), _mu(<a class="code" href="classbdm_1_1mlnorm.html#6de45ab731143e70a94318df586c36ba" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>-&gt;_mu()) { set_ep(<a class="code" href="classbdm_1_1mlnorm.html#6de45ab731143e70a94318df586c36ba" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>); };
434<a name="l00544"></a>00544                         <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> (<span class="keyword">const</span> mat &amp;A, <span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> sq_T &amp;R ) :<a class="code" href="classbdm_1_1mlnorm.html#6de45ab731143e70a94318df586c36ba" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>(new <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a>&lt;sq_T&gt;()), _mu(<a class="code" href="classbdm_1_1mlnorm.html#6de45ab731143e70a94318df586c36ba" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>-&gt;_mu())
435<a name="l00545"></a>00545                         {
436<a name="l00546"></a>00546                                 set_ep(<a class="code" href="classbdm_1_1mlnorm.html#6de45ab731143e70a94318df586c36ba" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>); <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">set_parameters</a> ( A,mu0,R );
437<a name="l00547"></a>00547                         }
438<a name="l00548"></a>00548
439<a name="l00550"></a>00550                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">set_parameters</a> ( <span class="keyword">const</span>  mat &amp;A, <span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> sq_T &amp;R );
440<a name="l00553"></a>00553                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">condition</a> ( <span class="keyword">const</span> vec &amp;cond );
441<a name="l00554"></a>00554
442<a name="l00556"></a><a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced">00556</a>                         vec&amp; <a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced" title="access function">_mu_const</a>() {<span class="keywordflow">return</span> mu_const;}
443<a name="l00558"></a><a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614">00558</a>                         mat&amp; <a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614" title="access function">_A</a>() {<span class="keywordflow">return</span> A;}
444<a name="l00560"></a><a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604">00560</a>                         mat <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>() { <span class="keywordflow">return</span> <a class="code" href="classbdm_1_1mlnorm.html#6de45ab731143e70a94318df586c36ba" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>-&gt;_R().to_mat(); }
445<a name="l00561"></a>00561
446<a name="l00562"></a>00562                         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_M&gt;
447<a name="l00563"></a>00563                         <span class="keyword">friend</span> std::ostream &amp;operator&lt;&lt; ( std::ostream &amp;os,  mlnorm&lt;sq_M&gt; &amp;ml );
448<a name="l00564"></a>00564                         
449<a name="l00565"></a><a class="code" href="classbdm_1_1mlnorm.html#8582928555c309a2865f385dd0441fd1">00565</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#8582928555c309a2865f385dd0441fd1">from_setting</a>(<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>){
450<a name="l00566"></a>00566                                 <a class="code" href="classbdm_1_1mlnorm.html#8582928555c309a2865f385dd0441fd1">mpdf::from_setting</a>(<span class="keyword">set</span>);       
451<a name="l00567"></a>00567
452<a name="l00568"></a>00568                                 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a>(A,<span class="keyword">set</span>,<span class="stringliteral">"A"</span>, UI::compulsory);
453<a name="l00569"></a>00569                                 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a>(mu_const,<span class="keyword">set</span>,<span class="stringliteral">"const"</span>, UI::compulsory);
454<a name="l00570"></a>00570                                 mat R0;
455<a name="l00571"></a>00571                                 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a>(R0,<span class="keyword">set</span>,<span class="stringliteral">"R"</span>, UI::compulsory);
456<a name="l00572"></a>00572                                 <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">set_parameters</a>(A,mu_const,R0);
457<a name="l00573"></a>00573                         };
458<a name="l00574"></a>00574         };
459<a name="l00575"></a>00575         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(mlnorm&lt;ldmat&gt;);
460<a name="l00576"></a>00576         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(mlnorm&lt;fsqmat&gt;);
461<a name="l00577"></a>00577         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(mlnorm&lt;chmat&gt;);
462<a name="l00578"></a>00578
463<a name="l00580"></a>00580         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
464<a name="l00581"></a><a class="code" href="classbdm_1_1mgnorm.html">00581</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1mgnorm.html" title="Mpdf with general function for mean value.">mgnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a>
465<a name="l00582"></a>00582         {
466<a name="l00583"></a>00583                 <span class="keyword">protected</span>:
467<a name="l00585"></a><a class="code" href="classbdm_1_1mgnorm.html#e63ba612a75f761c03025d22463219cb">00585</a>                         <a class="code" href="classbdm_1_1shared__ptr.html" title="A naive implementation of roughly a subset of the std::tr1:shared_ptr spec (really...">shared_ptr&lt;enorm&lt;sq_T&gt;</a> &gt; <a class="code" href="classbdm_1_1mgnorm.html#e63ba612a75f761c03025d22463219cb" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>;
468<a name="l00586"></a>00586                         vec &amp;mu;
469<a name="l00587"></a>00587                         <a class="code" href="classbdm_1_1fnc.html" title="Class representing function  of variable  represented by rv.">fnc</a>* g;
470<a name="l00588"></a>00588                 <span class="keyword">public</span>:
471<a name="l00590"></a><a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d">00590</a>                         <a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d" title="default constructor">mgnorm</a>():<a class="code" href="classbdm_1_1mgnorm.html#e63ba612a75f761c03025d22463219cb" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>(new <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a>&lt;sq_T&gt;()), mu(<a class="code" href="classbdm_1_1mgnorm.html#e63ba612a75f761c03025d22463219cb" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>-&gt;_mu()) { set_ep(<a class="code" href="classbdm_1_1mgnorm.html#e63ba612a75f761c03025d22463219cb" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>); }
472<a name="l00592"></a><a class="code" href="classbdm_1_1mgnorm.html#578e02458e2a0d17f3864826b6ebd564">00592</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#578e02458e2a0d17f3864826b6ebd564" title="set mean function">set_parameters</a> ( <a class="code" href="classbdm_1_1fnc.html" title="Class representing function  of variable  represented by rv.">fnc</a>* g0, <span class="keyword">const</span> sq_T &amp;R0 ) {g=g0; <a class="code" href="classbdm_1_1mgnorm.html#e63ba612a75f761c03025d22463219cb" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>-&gt;set_parameters ( zeros ( g-&gt;<a class="code" href="classbdm_1_1fnc.html#083832294da9d1e40804158b979c4341" title="access function">dimension</a>() ), R0 );}
473<a name="l00593"></a><a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d">00593</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &amp;cond ) {mu=g-&gt;<a class="code" href="classbdm_1_1fnc.html#6277b11d7fffc7ef8a2fa3e84ae5bad4" title="function evaluates numerical value of  at  cond ">eval</a> ( cond );};
474<a name="l00594"></a>00594
475<a name="l00595"></a>00595
476<a name="l00623"></a><a class="code" href="classbdm_1_1mgnorm.html#d717dacc6a9eb967f8410994dc6dc6f9">00623</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#d717dacc6a9eb967f8410994dc6dc6f9">from_setting</a>( <span class="keyword">const</span> Setting &amp;<span class="keyword">set</span> )
477<a name="l00624"></a>00624                         {       
478<a name="l00625"></a>00625                                 <a class="code" href="classbdm_1_1fnc.html" title="Class representing function  of variable  represented by rv.">fnc</a>* g = UI::build&lt;fnc&gt;( <span class="keyword">set</span>, <span class="stringliteral">"g"</span>, UI::compulsory );
479<a name="l00626"></a>00626
480<a name="l00627"></a>00627                                 mat R;                                 
481<a name="l00628"></a>00628                                 vec dR;                                 
482<a name="l00629"></a>00629                                 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a>( dR, <span class="keyword">set</span>, <span class="stringliteral">"dR"</span> ) )
483<a name="l00630"></a>00630                                         R=diag(dR);
484<a name="l00631"></a>00631                                 <span class="keywordflow">else</span> 
485<a name="l00632"></a>00632                                         <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a>( R, <span class="keyword">set</span>, <span class="stringliteral">"R"</span>, UI::compulsory);
486<a name="l00633"></a>00633                 
487<a name="l00634"></a>00634                                 <a class="code" href="classbdm_1_1mgnorm.html#578e02458e2a0d17f3864826b6ebd564" title="set mean function">set_parameters</a>(g,R);
488<a name="l00635"></a>00635                         }
489<a name="l00636"></a>00636         };
490<a name="l00637"></a>00637
491<a name="l00638"></a>00638         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(mgnorm&lt;chmat&gt;);
492<a name="l00639"></a>00639
493<a name="l00640"></a>00640
494<a name="l00648"></a><a class="code" href="classbdm_1_1mlstudent.html">00648</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a>&lt;ldmat&gt;
495<a name="l00649"></a>00649         {
496<a name="l00650"></a>00650                 <span class="keyword">protected</span>:
497<a name="l00651"></a>00651                         <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Lambda;
498<a name="l00652"></a>00652                         <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &amp;<a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>;
499<a name="l00653"></a>00653                         <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Re;
500<a name="l00654"></a>00654                 <span class="keyword">public</span>:
501<a name="l00655"></a>00655                         <a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> ( ) :<a class="code" href="classbdm_1_1mlnorm.html">mlnorm&lt;ldmat&gt;</a> (),
502<a name="l00656"></a>00656                                         Lambda (),      <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> ( <a class="code" href="classbdm_1_1mlnorm.html#6de45ab731143e70a94318df586c36ba" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>-&gt;_R() ) {}
503<a name="l00657"></a>00657                         <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &amp;A0, <span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &amp;R0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>&amp; Lambda0 )
504<a name="l00658"></a>00658                         {
505<a name="l00659"></a>00659                                 it_assert_debug ( A0.rows() ==mu0.length(),<span class="stringliteral">""</span> );
506<a name="l00660"></a>00660                                 it_assert_debug ( R0.<a class="code" href="classsqmat.html#071e80ced9cc3b8cbb360fa7462eb646" title="Reimplementing common functions of mat: rows().">rows</a>() ==A0.rows(),<span class="stringliteral">""</span> );
507<a name="l00661"></a>00661
508<a name="l00662"></a>00662                                 <a class="code" href="classbdm_1_1mlnorm.html#6de45ab731143e70a94318df586c36ba" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>-&gt;set_parameters ( mu0,Lambda ); <span class="comment">//</span>
509<a name="l00663"></a>00663                                 A = A0;
510<a name="l00664"></a>00664                                 mu_const = mu0;
511<a name="l00665"></a>00665                                 Re=R0;
512<a name="l00666"></a>00666                                 Lambda = Lambda0;
513<a name="l00667"></a>00667                         }
514<a name="l00668"></a><a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">00668</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">condition</a> ( <span class="keyword">const</span> vec &amp;cond )
515<a name="l00669"></a>00669                         {
516<a name="l00670"></a>00670                                 _mu = A*cond + mu_const;
517<a name="l00671"></a>00671                                 <span class="keywordtype">double</span> zeta;
518<a name="l00672"></a>00672                                 <span class="comment">//ugly hack!</span>
519<a name="l00673"></a>00673                                 <span class="keywordflow">if</span> ( ( cond.length() +1 ) ==Lambda.<a class="code" href="classsqmat.html#071e80ced9cc3b8cbb360fa7462eb646" title="Reimplementing common functions of mat: rows().">rows</a>() )
520<a name="l00674"></a>00674                                 {
521<a name="l00675"></a>00675                                         zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( concat ( cond, vec_1 ( 1.0 ) ) );
522<a name="l00676"></a>00676                                 }
523<a name="l00677"></a>00677                                 <span class="keywordflow">else</span>
524<a name="l00678"></a>00678                                 {
525<a name="l00679"></a>00679                                         zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( cond );
526<a name="l00680"></a>00680                                 }
527<a name="l00681"></a>00681                                 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> = Re;
528<a name="l00682"></a>00682                                 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>*= ( 1+zeta );<span class="comment">// / ( nu ); &lt;&lt; nu is in Re!!!!!!</span>
529<a name="l00683"></a>00683                         };
530<a name="l00684"></a>00684
531<a name="l00685"></a>00685         };
532<a name="l00695"></a><a class="code" href="classbdm_1_1mgamma.html">00695</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a>
533<a name="l00696"></a>00696         {
534<a name="l00697"></a>00697                 <span class="keyword">protected</span>:
535<a name="l00699"></a><a class="code" href="classbdm_1_1mgamma.html#413aa1c71b58a71d64c08da3aa642c08">00699</a>                         <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;egamma&gt;</a> <a class="code" href="classbdm_1_1mgamma.html#413aa1c71b58a71d64c08da3aa642c08" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>;
536<a name="l00700"></a>00700
537<a name="l00702"></a><a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09">00702</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>;
538<a name="l00703"></a>00703
539<a name="l00705"></a><a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312">00705</a>                         vec &amp;<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a>;
540<a name="l00706"></a>00706
541<a name="l00707"></a>00707                 <span class="keyword">public</span>:
542<a name="l00709"></a><a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1">00709</a>                         <a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1" title="Constructor.">mgamma</a>():<a class="code" href="classbdm_1_1mgamma.html#413aa1c71b58a71d64c08da3aa642c08" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>(new <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a>()), <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>(0),
543<a name="l00710"></a>00710                             <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a>(<a class="code" href="classbdm_1_1mgamma.html#413aa1c71b58a71d64c08da3aa642c08" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>-&gt;<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a>()) {
544<a name="l00711"></a>00711                             set_ep(<a class="code" href="classbdm_1_1mgamma.html#413aa1c71b58a71d64c08da3aa642c08" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>);
545<a name="l00712"></a>00712                         }
546<a name="l00713"></a>00713
547<a name="l00715"></a>00715                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#a0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a>(<span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, <span class="keyword">const</span> vec &amp;beta0);
548<a name="l00716"></a>00716
549<a name="l00717"></a><a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff">00717</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &amp;val ) {<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/val;};
550<a name="l00727"></a><a class="code" href="classbdm_1_1mgamma.html#da2af0f327e5452bee71d1bf97452ae4">00727</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#da2af0f327e5452bee71d1bf97452ae4">from_setting</a>(<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>){
551<a name="l00728"></a>00728                                 <a class="code" href="classbdm_1_1mgamma.html#da2af0f327e5452bee71d1bf97452ae4">mpdf::from_setting</a>(<span class="keyword">set</span>); <span class="comment">// reads rv and rvc</span>
552<a name="l00729"></a>00729                                 vec betatmp; <span class="comment">// ugly but necessary</span>
553<a name="l00730"></a>00730                                 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a>(betatmp,<span class="keyword">set</span>,<span class="stringliteral">"beta"</span>, UI::compulsory);
554<a name="l00731"></a>00731                                 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a>(<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>,<span class="keyword">set</span>,<span class="stringliteral">"k"</span>, UI::compulsory);
555<a name="l00732"></a>00732                                 <a class="code" href="classbdm_1_1mgamma.html#a0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a>(<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>,betatmp);
556<a name="l00733"></a>00733                         }
557<a name="l00734"></a>00734         };
558<a name="l00735"></a>00735         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(mgamma);
559<a name="l00736"></a>00736         
560<a name="l00746"></a><a class="code" href="classbdm_1_1migamma.html">00746</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a>
561<a name="l00747"></a>00747         {
562<a name="l00748"></a>00748                 <span class="keyword">protected</span>:
563<a name="l00750"></a><a class="code" href="classbdm_1_1migamma.html#f1636dbded763fecbd1c6a22dc6971fa">00750</a>                         <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;eigamma&gt;</a> <a class="code" href="classbdm_1_1migamma.html#f1636dbded763fecbd1c6a22dc6971fa" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>;
564<a name="l00751"></a>00751
565<a name="l00753"></a><a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c">00753</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>;
566<a name="l00754"></a>00754
567<a name="l00756"></a><a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc">00756</a>                         vec &amp;<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a>;
568<a name="l00757"></a>00757
569<a name="l00759"></a><a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5">00759</a>                         vec &amp;<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a>;
570<a name="l00760"></a>00760
571<a name="l00761"></a>00761                 <span class="keyword">public</span>:
572<a name="l00764"></a>00764                         <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a>():<a class="code" href="classbdm_1_1migamma.html#f1636dbded763fecbd1c6a22dc6971fa" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>(new <a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a>()),
573<a name="l00765"></a>00765                             <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>(0),
574<a name="l00766"></a>00766                             <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a>(<a class="code" href="classbdm_1_1migamma.html#f1636dbded763fecbd1c6a22dc6971fa" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>-&gt;<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a>()),
575<a name="l00767"></a>00767                             <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a>(<a class="code" href="classbdm_1_1migamma.html#f1636dbded763fecbd1c6a22dc6971fa" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>-&gt;<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a>()) {
576<a name="l00768"></a>00768                             set_ep(<a class="code" href="classbdm_1_1migamma.html#f1636dbded763fecbd1c6a22dc6971fa" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>);
577<a name="l00769"></a>00769                         }
578<a name="l00770"></a>00770
579<a name="l00771"></a>00771                         <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a>(<span class="keyword">const</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> &amp;m):<a class="code" href="classbdm_1_1migamma.html#f1636dbded763fecbd1c6a22dc6971fa" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>(m.<a class="code" href="classbdm_1_1migamma.html#f1636dbded763fecbd1c6a22dc6971fa" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>),
580<a name="l00772"></a>00772                             <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>(0),
581<a name="l00773"></a>00773                             <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a>(<a class="code" href="classbdm_1_1migamma.html#f1636dbded763fecbd1c6a22dc6971fa" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>-&gt;<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a>()),
582<a name="l00774"></a>00774                             <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a>(<a class="code" href="classbdm_1_1migamma.html#f1636dbded763fecbd1c6a22dc6971fa" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>-&gt;<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a>()) {
583<a name="l00775"></a>00775                             set_ep(<a class="code" href="classbdm_1_1migamma.html#f1636dbded763fecbd1c6a22dc6971fa" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>);
584<a name="l00776"></a>00776                         }
585<a name="l00778"></a>00778
586<a name="l00780"></a><a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151">00780</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">int</span> len, <span class="keywordtype">double</span> k0 )
587<a name="l00781"></a>00781                         {
588<a name="l00782"></a>00782                                 <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>=k0;
589<a name="l00783"></a>00783                                 <a class="code" href="classbdm_1_1migamma.html#f1636dbded763fecbd1c6a22dc6971fa" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>-&gt;set_parameters ( ( 1.0/ ( <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>*<a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a> ) +2.0 ) *ones ( len ) <span class="comment">/*alpha*/</span>, ones ( len ) <span class="comment">/*beta*/</span> );
590<a name="l00784"></a>00784                                 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension();
591<a name="l00785"></a>00785                         };
592<a name="l00786"></a><a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c">00786</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &amp;val )
593<a name="l00787"></a>00787                         {
594<a name="l00788"></a>00788                                 <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a>=elem_mult ( val, ( <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a>-1.0 ) );
595<a name="l00789"></a>00789                         };
596<a name="l00790"></a>00790         };
597<a name="l00791"></a>00791
598<a name="l00792"></a>00792
599<a name="l00804"></a><a class="code" href="classbdm_1_1mgamma__fix.html">00804</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma__fix.html" title="Gamma random walk around a fixed point.">mgamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a>
600<a name="l00805"></a>00805         {
601<a name="l00806"></a>00806                 <span class="keyword">protected</span>:
602<a name="l00808"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa">00808</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>;
603<a name="l00810"></a><a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2">00810</a>                         vec <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>;
604<a name="l00811"></a>00811                 <span class="keyword">public</span>:
605<a name="l00813"></a><a class="code" href="classbdm_1_1mgamma__fix.html#9a31bc9b4b60188a18a2a6b588dc4b2d">00813</a>                         <a class="code" href="classbdm_1_1mgamma__fix.html#9a31bc9b4b60188a18a2a6b588dc4b2d" title="Constructor.">mgamma_fix</a> ( ) : <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> ( ),<a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a> () {};
606<a name="l00815"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2">00815</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 )
607<a name="l00816"></a>00816                         {
608<a name="l00817"></a>00817                                 <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">mgamma::set_parameters</a> ( k0, ref0 );
609<a name="l00818"></a>00818                                 <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>=pow ( ref0,1.0-l0 );<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>=l0;
610<a name="l00819"></a>00819                                 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=dimension();
611<a name="l00820"></a>00820                         };
612<a name="l00821"></a>00821
613<a name="l00822"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7">00822</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &amp;val ) {vec mean=elem_mult ( <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>,pow ( val,<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a> ) ); <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/mean;};
614<a name="l00823"></a>00823         };
615<a name="l00824"></a>00824
616<a name="l00825"></a>00825
617<a name="l00838"></a><a class="code" href="classbdm_1_1migamma__ref.html">00838</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma__ref.html" title="Inverse-Gamma random walk around a fixed point.">migamma_ref</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a>
618<a name="l00839"></a>00839         {
619<a name="l00840"></a>00840                 <span class="keyword">protected</span>:
620<a name="l00842"></a><a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d">00842</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a>;
621<a name="l00844"></a><a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6">00844</a>                         vec <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>;
622<a name="l00845"></a>00845                 <span class="keyword">public</span>:
623<a name="l00847"></a><a class="code" href="classbdm_1_1migamma__ref.html#f45b15a10f084991ba6b48295f10421f">00847</a>                         <a class="code" href="classbdm_1_1migamma__ref.html#f45b15a10f084991ba6b48295f10421f" title="Constructor.">migamma_ref</a> ( ) : <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> (),<a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a> ( ) {};
624<a name="l00849"></a><a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800">00849</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 )
625<a name="l00850"></a>00850                         {
626<a name="l00851"></a>00851                                 <a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800" title="Set value of k.">migamma::set_parameters</a> ( ref0.length(), k0 );
627<a name="l00852"></a>00852                                 <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>=pow ( ref0,1.0-l0 );
628<a name="l00853"></a>00853                                 <a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a>=l0;
629<a name="l00854"></a>00854                                 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension();
630<a name="l00855"></a>00855                         };
631<a name="l00856"></a>00856
632<a name="l00857"></a><a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a">00857</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &amp;val )
633<a name="l00858"></a>00858                         {
634<a name="l00859"></a>00859                                 vec mean=elem_mult ( <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>,pow ( val,<a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a> ) );
635<a name="l00860"></a>00860                                 <a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">migamma::condition</a> ( mean );
636<a name="l00861"></a>00861                         };
637<a name="l00862"></a>00862
638<a name="l00883"></a>00883                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#9e7e0f7d2aa9ecca8ec1af8cbcb5ef1d">from_setting</a>( <span class="keyword">const</span> Setting &amp;<span class="keyword">set</span> );
639<a name="l00884"></a>00884
640<a name="l00885"></a>00885                         <span class="comment">// TODO dodelat void to_setting( Setting &amp;set ) const;</span>
641<a name="l00886"></a>00886         };
642<a name="l00887"></a>00887
643<a name="l00888"></a>00888
644<a name="l00889"></a>00889         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(migamma_ref);
645<a name="l00890"></a>00890
646<a name="l00900"></a><a class="code" href="classbdm_1_1elognorm.html">00900</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1elognorm.html">elognorm</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a>&lt;ldmat&gt;
647<a name="l00901"></a>00901         {
648<a name="l00902"></a>00902                 <span class="keyword">public</span>:
649<a name="l00903"></a><a class="code" href="classbdm_1_1elognorm.html#8b948e2bce1253765a2542199913aaba">00903</a>                         vec <a class="code" href="classbdm_1_1elognorm.html#8b948e2bce1253765a2542199913aaba" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> exp ( <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;ldmat&gt;::sample</a>() );};
650<a name="l00904"></a><a class="code" href="classbdm_1_1elognorm.html#adb41e4f4d6600dec6f8c1dbc5ed9eea">00904</a>                         vec <a class="code" href="classbdm_1_1elognorm.html#adb41e4f4d6600dec6f8c1dbc5ed9eea" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec var=<a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773" title="return expected variance (not covariance!)">enorm&lt;ldmat&gt;::variance</a>();<span class="keywordflow">return</span> exp ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> - 0.5*var );};
651<a name="l00905"></a>00905
652<a name="l00906"></a>00906         };
653<a name="l00907"></a>00907
654<a name="l00919"></a><a class="code" href="classbdm_1_1mlognorm.html">00919</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1mlognorm.html" title="Log-Normal random walk.">mlognorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>
655<a name="l00920"></a>00920         {
656<a name="l00921"></a>00921                 <span class="keyword">protected</span>:
657<a name="l00922"></a>00922                         <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;elognorm&gt;</a> eno;
658<a name="l00923"></a>00923
659<a name="l00925"></a><a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a">00925</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>;
660<a name="l00926"></a>00926
661<a name="l00928"></a><a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2">00928</a>                         vec &amp;<a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>;
662<a name="l00929"></a>00929                 <span class="keyword">public</span>:
663<a name="l00931"></a><a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41">00931</a>                         <a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41" title="Constructor.">mlognorm</a>():eno(new <a class="code" href="classbdm_1_1elognorm.html">elognorm</a>()),
664<a name="l00932"></a>00932                             <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>(0),
665<a name="l00933"></a>00933                             <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>(eno-&gt;_mu()) {
666<a name="l00934"></a>00934                             set_ep(eno);
667<a name="l00935"></a>00935                         }
668<a name="l00936"></a>00936
669<a name="l00938"></a><a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f">00938</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">int</span> size, <span class="keywordtype">double</span> k )
670<a name="l00939"></a>00939                         {
671<a name="l00940"></a>00940                                 <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a> = 0.5*log ( k*k+1 );
672<a name="l00941"></a>00941                                 eno-&gt;set_parameters ( zeros ( size ),2*<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>*eye ( size ) );
673<a name="l00942"></a>00942
674<a name="l00943"></a>00943                                 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = size;
675<a name="l00944"></a>00944                         };
676<a name="l00945"></a>00945
677<a name="l00946"></a><a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e">00946</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &amp;val )
678<a name="l00947"></a>00947                         {
679<a name="l00948"></a>00948                                 <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>=log ( val )-<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>;<span class="comment">//elem_mult ( refl,pow ( val,l ) );</span>
680<a name="l00949"></a>00949                         };
681<a name="l00950"></a>00950
682<a name="l00969"></a>00969                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#49e45ea13a869da607ef9be7a229128a">from_setting</a>( <span class="keyword">const</span> Setting &amp;<span class="keyword">set</span> );
683<a name="l00970"></a>00970
684<a name="l00971"></a>00971                         <span class="comment">// TODO dodelat void to_setting( Setting &amp;set ) const;</span>
685<a name="l00972"></a>00972
686<a name="l00973"></a>00973         };
687<a name="l00974"></a>00974         
688<a name="l00975"></a>00975         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(mlognorm);
689<a name="l00976"></a>00976
690<a name="l00980"></a><a class="code" href="classbdm_1_1eWishartCh.html">00980</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1eWishartCh.html">eWishartCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>
691<a name="l00981"></a>00981         {
692<a name="l00982"></a>00982                 <span class="keyword">protected</span>:
693<a name="l00984"></a><a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490">00984</a>                         <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>;
694<a name="l00986"></a><a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f">00986</a>                         <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>;
695<a name="l00988"></a><a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3">00988</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>;
696<a name="l00989"></a>00989                 <span class="keyword">public</span>:
697<a name="l00990"></a>00990                         <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &amp;Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0 ) {<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>=<a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> ( Y0 );<a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>=delta0; <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>=<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classsqmat.html#071e80ced9cc3b8cbb360fa7462eb646" title="Reimplementing common functions of mat: rows().">rows</a>(); <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>*<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; }
698<a name="l00991"></a>00991                         mat sample_mat()<span class="keyword"> const</span>
699<a name="l00992"></a>00992 <span class="keyword">                        </span>{
700<a name="l00993"></a>00993                                 mat X=zeros ( <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>,<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a> );
701<a name="l00994"></a>00994
702<a name="l00995"></a>00995                                 <span class="comment">//sample diagonal</span>
703<a name="l00996"></a>00996                                 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i&lt;<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>;i++ )
704<a name="l00997"></a>00997                                 {
705<a name="l00998"></a>00998                                         GamRNG.<a class="code" href="classitpp_1_1Gamma__RNG.html#dfaae19411e39aa87e1f72e409b6babe" title="Set lambda.">setup</a> ( 0.5* ( <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>-i ) , 0.5 ); <span class="comment">// no +1 !! index if from 0</span>
706<a name="l00999"></a>00999 <span class="preprocessor">#pragma omp critical</span>
707<a name="l01000"></a>01000 <span class="preprocessor"></span>                                        X ( i,i ) =sqrt ( GamRNG() );
708<a name="l01001"></a>01001                                 }
709<a name="l01002"></a>01002                                 <span class="comment">//do the rest</span>
710<a name="l01003"></a>01003                                 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i&lt;p;i++ )
711<a name="l01004"></a>01004                                 {
712<a name="l01005"></a>01005                                         <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> j=i+1;j&lt;p;j++ )
713<a name="l01006"></a>01006                                         {
714<a name="l01007"></a>01007 <span class="preprocessor">#pragma omp critical</span>
715<a name="l01008"></a>01008 <span class="preprocessor"></span>                                                X ( i,j ) =NorRNG.sample();
716<a name="l01009"></a>01009                                         }
717<a name="l01010"></a>01010                                 }
718<a name="l01011"></a>01011                                 <span class="keywordflow">return</span> X*<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>();<span class="comment">// return upper triangular part of the decomposition</span>
719<a name="l01012"></a>01012                         }
720<a name="l01013"></a><a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a">01013</a>                         vec <a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a" title="Returns a sample,  from density .">sample</a> ()<span class="keyword"> const</span>
721<a name="l01014"></a>01014 <span class="keyword">                        </span>{
722<a name="l01015"></a>01015                                 <span class="keywordflow">return</span> vec ( sample_mat()._data(),p*p );
723<a name="l01016"></a>01016                         }
724<a name="l01018"></a><a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981">01018</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981" title="fast access function y0 will be copied into Y.Ch.">setY</a> ( <span class="keyword">const</span> mat &amp;Ch0 ) {copy_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,Ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>()._data() );}
725<a name="l01020"></a><a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a">01020</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a" title="fast access function y0 will be copied into Y.Ch.">_setY</a> ( <span class="keyword">const</span> vec &amp;ch0 ) {copy_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>()._data() ); }
726<a name="l01022"></a><a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e">01022</a>                         <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>&amp; <a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e" title="access function">getY</a>()<span class="keyword">const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>;}
727<a name="l01023"></a>01023         };
728<a name="l01024"></a>01024
729<a name="l01025"></a>01025         <span class="keyword">class </span>eiWishartCh: <span class="keyword">public</span> epdf
730<a name="l01026"></a>01026         {
731<a name="l01027"></a>01027                 <span class="keyword">protected</span>:
732<a name="l01028"></a>01028                         eWishartCh W;
733<a name="l01029"></a>01029                         <span class="keywordtype">int</span> p;
734<a name="l01030"></a>01030                         <span class="keywordtype">double</span> delta;
735<a name="l01031"></a>01031                 <span class="keyword">public</span>:
736<a name="l01032"></a>01032                         <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &amp;Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0) {
737<a name="l01033"></a>01033                                 delta = delta0;
738<a name="l01034"></a>01034                                 W.set_parameters ( inv ( Y0 ),delta0 );
739<a name="l01035"></a>01035                                 dim = W.dimension(); p=Y0.rows();
740<a name="l01036"></a>01036                         }
741<a name="l01037"></a>01037                         vec sample()<span class="keyword"> const </span>{mat iCh; iCh=inv ( W.sample_mat() ); <span class="keywordflow">return</span> vec ( iCh._data(),<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> );}
742<a name="l01038"></a>01038                         <span class="keywordtype">void</span> _setY ( <span class="keyword">const</span> vec &amp;y0 )
743<a name="l01039"></a>01039                         {
744<a name="l01040"></a>01040                                 mat Ch ( p,p );
745<a name="l01041"></a>01041                                 mat iCh ( p,p );
746<a name="l01042"></a>01042                                 copy_vector ( dim, y0._data(), Ch._data() );
747<a name="l01043"></a>01043                                 
748<a name="l01044"></a>01044                                 iCh=inv ( Ch );
749<a name="l01045"></a>01045                                 W.setY ( iCh );
750<a name="l01046"></a>01046                         }
751<a name="l01047"></a>01047                         <span class="keyword">virtual</span> <span class="keywordtype">double</span> evallog ( <span class="keyword">const</span> vec &amp;val )<span class="keyword"> const </span>{
752<a name="l01048"></a>01048                                 <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> X(p);
753<a name="l01049"></a>01049                                 <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>&amp; Y=W.getY();
754<a name="l01050"></a>01050                                 
755<a name="l01051"></a>01051                                 copy_vector(p*p,val._data(),X._Ch()._data());
756<a name="l01052"></a>01052                                 <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> iX(p);X.inv(iX);
757<a name="l01053"></a>01053                                 <span class="comment">// compute  </span>
758<a name="l01054"></a>01054 <span class="comment">//                              \frac{ |\Psi|^{m/2}|X|^{-(m+p+1)/2}e^{-tr(\Psi X^{-1})/2} }{ 2^{mp/2}\Gamma_p(m/2)},</span>
759<a name="l01055"></a>01055                                 mat M=Y.<a class="code" href="classchmat.html#045addd685f8d978efda232d7dcb070e" title="Conversion to full matrix.">to_mat</a>()*iX.to_mat();
760<a name="l01056"></a>01056                                 
761<a name="l01057"></a>01057                                 <span class="keywordtype">double</span> log1 = 0.5*p*(2*Y.<a class="code" href="classchmat.html#b504ca818203b13e667cb3c503980382" title="Logarithm of a determinant.">logdet</a>())-0.5*(delta+p+1)*(2*X.logdet())-0.5*trace(M);
762<a name="l01058"></a>01058                                 <span class="comment">//Fixme! Multivariate gamma omitted!! it is ok for sampling, but not otherwise!!</span>
763<a name="l01059"></a>01059                                 
764<a name="l01060"></a>01060 <span class="comment">/*                              if (0) {</span>
765<a name="l01061"></a>01061 <span class="comment">                                        mat XX=X.to_mat();</span>
766<a name="l01062"></a>01062 <span class="comment">                                        mat YY=Y.to_mat();</span>
767<a name="l01063"></a>01063 <span class="comment">                                        </span>
768<a name="l01064"></a>01064 <span class="comment">                                        double log2 = 0.5*p*log(det(YY))-0.5*(delta+p+1)*log(det(XX))-0.5*trace(YY*inv(XX)); </span>
769<a name="l01065"></a>01065 <span class="comment">                                        cout &lt;&lt; log1 &lt;&lt; "," &lt;&lt; log2 &lt;&lt; endl;</span>
770<a name="l01066"></a>01066 <span class="comment">                                }*/</span>
771<a name="l01067"></a>01067                                 <span class="keywordflow">return</span> log1;                           
772<a name="l01068"></a>01068                         };
773<a name="l01069"></a>01069                         
774<a name="l01070"></a>01070         };
775<a name="l01071"></a>01071
776<a name="l01072"></a>01072         <span class="keyword">class </span>rwiWishartCh : <span class="keyword">public</span> mpdf
777<a name="l01073"></a>01073         {
778<a name="l01074"></a>01074                 <span class="keyword">protected</span>:
779<a name="l01075"></a>01075                         shared_ptr&lt;eiWishartCh&gt; eiW;
780<a name="l01077"></a>01077                         <span class="keywordtype">double</span> sqd;
781<a name="l01078"></a>01078                         <span class="comment">//reference point for diagonal</span>
782<a name="l01079"></a>01079                         vec refl;
783<a name="l01080"></a>01080                         <span class="keywordtype">double</span> l;
784<a name="l01081"></a>01081                         <span class="keywordtype">int</span> p;
785<a name="l01082"></a>01082
786<a name="l01083"></a>01083                 <span class="keyword">public</span>:
787<a name="l01084"></a>01084                         rwiWishartCh():eiW(new eiWishartCh()),
788<a name="l01085"></a>01085                             sqd(0), l(0), p(0) {
789<a name="l01086"></a>01086                             set_ep(eiW);
790<a name="l01087"></a>01087                         }
791<a name="l01088"></a>01088
792<a name="l01089"></a>01089                         <span class="keywordtype">void</span> set_parameters ( <span class="keywordtype">int</span> p0, <span class="keywordtype">double</span> k, vec ref0, <span class="keywordtype">double</span> l0  )
793<a name="l01090"></a>01090                         {
794<a name="l01091"></a>01091                                 p=p0;
795<a name="l01092"></a>01092                                 <span class="keywordtype">double</span> delta = 2/(k*k)+p+3;
796<a name="l01093"></a>01093                                 sqd=sqrt ( delta-p-1 );
797<a name="l01094"></a>01094                                 l=l0;
798<a name="l01095"></a>01095                                 refl=pow(ref0,1-l);
799<a name="l01096"></a>01096                                 
800<a name="l01097"></a>01097                                 eiW-&gt;set_parameters ( eye ( p ),delta );
801<a name="l01098"></a>01098                                 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=eiW-&gt;dimension();
802<a name="l01099"></a>01099                         }
803<a name="l01100"></a>01100                         <span class="keywordtype">void</span> condition ( <span class="keyword">const</span> vec &amp;c ) {
804<a name="l01101"></a>01101                                 vec z=c;
805<a name="l01102"></a>01102                                 <span class="keywordtype">int</span> ri=0;
806<a name="l01103"></a>01103                                 <span class="keywordflow">for</span>(<span class="keywordtype">int</span> i=0;i&lt;p*p;i+=(p+1)){<span class="comment">//trace diagonal element</span>
807<a name="l01104"></a>01104                                         z(i) = pow(z(i),l)*refl(ri);
808<a name="l01105"></a>01105                                         ri++;
809<a name="l01106"></a>01106                                 }
810<a name="l01107"></a>01107
811<a name="l01108"></a>01108                                 eiW-&gt;_setY ( sqd*z );
812<a name="l01109"></a>01109                         }
813<a name="l01110"></a>01110         };
814<a name="l01111"></a>01111
815<a name="l01113"></a>01113         <span class="keyword">enum</span> RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 };
816<a name="l01119"></a><a class="code" href="classbdm_1_1eEmp.html">01119</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>
817<a name="l01120"></a>01120         {
818<a name="l01121"></a>01121                 <span class="keyword">protected</span> :
819<a name="l01123"></a><a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031">01123</a>                         <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;
820<a name="l01125"></a><a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d">01125</a>                         vec <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;
821<a name="l01127"></a><a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3">01127</a>                         Array&lt;vec&gt; <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;
822<a name="l01128"></a>01128                 <span class="keyword">public</span>:
823<a name="l01131"></a>01131                         <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( ) {};
824<a name="l01133"></a><a class="code" href="classbdm_1_1eEmp.html#a3daf6363455af099921715e1233c076">01133</a>                         <a class="code" href="classbdm_1_1eEmp.html#a3daf6363455af099921715e1233c076" title="copy constructor">eEmp</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> &amp;e ) : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( e ), <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ), <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ) {};
825<a name="l01135"></a>01135
826<a name="l01137"></a>01137                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#7cfd383180b486fe4526bdf0179350c0" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> vec &amp;w0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 );
827<a name="l01139"></a><a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7">01139</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 , <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a> ) {<a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( ones ( n ) /n,pdf0 );};
828<a name="l01141"></a>01141                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b62d802b8ef39f7c4dcbeb366c90951a" title="Set sample.">set_samples</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 );
829<a name="l01143"></a><a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1">01143</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1" title="Set sample.">set_parameters</a> ( <span class="keywordtype">int</span> n0, <span class="keywordtype">bool</span> copy=<span class="keyword">true</span> ) {<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>=n0; <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>.set_size ( n0,copy );<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>.set_size ( n0,copy );};
830<a name="l01145"></a><a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef">01145</a>                         vec&amp; <a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef" title="Potentially dangerous, use with care.">_w</a>()  {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;};
831<a name="l01147"></a><a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714">01147</a>                         <span class="keyword">const</span> vec&amp; <a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714" title="Potentially dangerous, use with care.">_w</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;};
832<a name="l01149"></a><a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2">01149</a>                         Array&lt;vec&gt;&amp; <a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;};
833<a name="l01151"></a><a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2">01151</a>                         <span class="keyword">const</span> Array&lt;vec&gt;&amp; <a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2" title="access function">_samples</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;};
834<a name="l01153"></a>01153                         ivec <a class="code" href="classbdm_1_1eEmp.html#f06ce255de5dbb2313f52ee51f82ba3d" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> ( RESAMPLING_METHOD method=SYSTEMATIC );
835<a name="l01155"></a><a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270">01155</a>                         vec <a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0;}
836<a name="l01157"></a><a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09">01157</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09" title="inherited operation : NOT implemneted">evallog</a> ( <span class="keyword">const</span> vec &amp;val )<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;}
837<a name="l01158"></a><a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9">01158</a>                         vec <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>()<span class="keyword"> const</span>
838<a name="l01159"></a>01159 <span class="keyword">                        </span>{
839<a name="l01160"></a>01160                                 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> );
840<a name="l01161"></a>01161                                 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i&lt;<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );}
841<a name="l01162"></a>01162                                 <span class="keywordflow">return</span> pom;
842<a name="l01163"></a>01163                         }
843<a name="l01164"></a><a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87">01164</a>                         vec <a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const</span>
844<a name="l01165"></a>01165 <span class="keyword">                        </span>{
845<a name="l01166"></a>01166                                 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> );
846<a name="l01167"></a>01167                                 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i&lt;<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=pow ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ),2 ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );}
847<a name="l01168"></a>01168                                 <span class="keywordflow">return</span> pom-pow ( <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>(),2 );
848<a name="l01169"></a>01169                         }
849<a name="l01171"></a><a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f">01171</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f" title="For this class, qbounds are minimum and maximum value of the population!">qbounds</a> ( vec &amp;lb, vec &amp;ub, <span class="keywordtype">double</span> perc=0.95 )<span class="keyword"> const</span>
850<a name="l01172"></a>01172 <span class="keyword">                        </span>{
851<a name="l01173"></a>01173                                 <span class="comment">// lb in inf so than it will be pushed below;</span>
852<a name="l01174"></a>01174                                 lb.set_size ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> );
853<a name="l01175"></a>01175                                 ub.set_size ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> );
854<a name="l01176"></a>01176                                 lb = std::numeric_limits&lt;double&gt;::infinity();
855<a name="l01177"></a>01177                                 ub = -std::numeric_limits&lt;double&gt;::infinity();
856<a name="l01178"></a>01178                                 <span class="keywordtype">int</span> j;
857<a name="l01179"></a>01179                                 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i&lt;<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ )
858<a name="l01180"></a>01180                                 {
859<a name="l01181"></a>01181                                         <span class="keywordflow">for</span> ( j=0;j&lt;<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>; j++ )
860<a name="l01182"></a>01182                                         {
861<a name="l01183"></a>01183                                                 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) &lt;lb ( j ) ) {lb ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );}
862<a name="l01184"></a>01184                                                 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) &gt;ub ( j ) ) {ub ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );}
863<a name="l01185"></a>01185                                         }
864<a name="l01186"></a>01186                                 }
865<a name="l01187"></a>01187                         }
866<a name="l01188"></a>01188         };
867<a name="l01189"></a>01189
868<a name="l01190"></a>01190
869<a name="l01192"></a>01192
870<a name="l01193"></a>01193         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
871<a name="l01194"></a>01194         <span class="keywordtype">void</span> enorm&lt;sq_T&gt;::set_parameters ( <span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> sq_T &amp;R0 )
872<a name="l01195"></a>01195         {
873<a name="l01196"></a>01196 <span class="comment">//Fixme test dimensions of mu0 and R0;</span>
874<a name="l01197"></a>01197                 mu = mu0;
875<a name="l01198"></a>01198                 R = R0;
876<a name="l01199"></a>01199                 <a class="code" href="classbdm_1_1root.html#1c314bd6d6dacb8ba78ea5eb88fd9516" title="This method TODO.">validate</a>();
877<a name="l01200"></a>01200         };
878<a name="l01201"></a>01201
879<a name="l01202"></a>01202         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
880<a name="l01203"></a><a class="code" href="classbdm_1_1enorm.html#61bd470764020bea6e1ed35000f259e6">01203</a>         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#61bd470764020bea6e1ed35000f259e6">enorm&lt;sq_T&gt;::from_setting</a>(<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>){
881<a name="l01204"></a>01204                 <a class="code" href="classbdm_1_1enorm.html#61bd470764020bea6e1ed35000f259e6">epdf::from_setting</a>(<span class="keyword">set</span>); <span class="comment">//reads rv</span>
882<a name="l01205"></a>01205                 
883<a name="l01206"></a>01206                 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a>(<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>,<span class="keyword">set</span>,<span class="stringliteral">"mu"</span>, UI::compulsory);
884<a name="l01207"></a>01207                 mat Rtmp;<span class="comment">// necessary for conversion</span>
885<a name="l01208"></a>01208                 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a>(Rtmp,<span class="keyword">set</span>,<span class="stringliteral">"R"</span>, UI::compulsory);
886<a name="l01209"></a>01209                 <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>=Rtmp; <span class="comment">// conversion</span>
887<a name="l01210"></a>01210                 <a class="code" href="classbdm_1_1enorm.html#38eb17ecb75d94a50b6782fcf735cfea" title="This method TODO.">validate</a>();
888<a name="l01211"></a>01211         }
889<a name="l01212"></a>01212
890<a name="l01213"></a>01213         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
891<a name="l01214"></a><a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2">01214</a>         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2" title="dupdate in exponential form (not really handy)">enorm&lt;sq_T&gt;::dupdate</a> ( mat &amp;v, <span class="keywordtype">double</span> nu )
892<a name="l01215"></a>01215         {
893<a name="l01216"></a>01216                 <span class="comment">//</span>
894<a name="l01217"></a>01217         };
895<a name="l01218"></a>01218
896<a name="l01219"></a>01219 <span class="comment">// template&lt;class sq_T&gt;</span>
897<a name="l01220"></a>01220 <span class="comment">// void enorm&lt;sq_T&gt;::tupdate ( double phi, mat &amp;vbar, double nubar ) {</span>
898<a name="l01221"></a>01221 <span class="comment">//      //</span>
899<a name="l01222"></a>01222 <span class="comment">// };</span>
900<a name="l01223"></a>01223
901<a name="l01224"></a>01224         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
902<a name="l01225"></a><a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766">01225</a>         vec <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample,  from density .">enorm&lt;sq_T&gt;::sample</a>()<span class="keyword"> const</span>
903<a name="l01226"></a>01226 <span class="keyword">        </span>{
904<a name="l01227"></a>01227                 vec x ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> );
905<a name="l01228"></a>01228 <span class="preprocessor">#pragma omp critical</span>
906<a name="l01229"></a>01229 <span class="preprocessor"></span>                NorRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,x );
907<a name="l01230"></a>01230                 vec smp = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x );
908<a name="l01231"></a>01231
909<a name="l01232"></a>01232                 smp += <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>;
910<a name="l01233"></a>01233                 <span class="keywordflow">return</span> smp;
911<a name="l01234"></a>01234         };
912<a name="l01235"></a>01235
913<a name="l01236"></a>01236 <span class="comment">// template&lt;class sq_T&gt;</span>
914<a name="l01237"></a>01237 <span class="comment">// double enorm&lt;sq_T&gt;::eval ( const vec &amp;val ) const {</span>
915<a name="l01238"></a>01238 <span class="comment">//      double pdfl,e;</span>
916<a name="l01239"></a>01239 <span class="comment">//      pdfl = evallog ( val );</span>
917<a name="l01240"></a>01240 <span class="comment">//      e = exp ( pdfl );</span>
918<a name="l01241"></a>01241 <span class="comment">//      return e;</span>
919<a name="l01242"></a>01242 <span class="comment">// };</span>
920<a name="l01243"></a>01243
921<a name="l01244"></a>01244         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
922<a name="l01245"></a><a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3">01245</a>         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">enorm&lt;sq_T&gt;::evallog_nn</a> ( <span class="keyword">const</span> vec &amp;val )<span class="keyword"> const</span>
923<a name="l01246"></a>01246 <span class="keyword">        </span>{
924<a name="l01247"></a>01247                 <span class="comment">// 1.83787706640935 = log(2pi)</span>
925<a name="l01248"></a>01248                 <span class="keywordtype">double</span> tmp=-0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.invqform ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>-val ) );<span class="comment">// - lognc();</span>
926<a name="l01249"></a>01249                 <span class="keywordflow">return</span>  tmp;
927<a name="l01250"></a>01250         };
928<a name="l01251"></a>01251
929<a name="l01252"></a>01252         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
930<a name="l01253"></a><a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32">01253</a>         <span class="keyword">inline</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">enorm&lt;sq_T&gt;::lognc</a> ()<span class="keyword"> const</span>
931<a name="l01254"></a>01254 <span class="keyword">        </span>{
932<a name="l01255"></a>01255                 <span class="comment">// 1.83787706640935 = log(2pi)</span>
933<a name="l01256"></a>01256                 <span class="keywordtype">double</span> tmp=0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 +<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.logdet() );
934<a name="l01257"></a>01257                 <span class="keywordflow">return</span> tmp;
935<a name="l01258"></a>01258         };
936<a name="l01259"></a>01259
937<a name="l01260"></a>01260         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
938<a name="l01261"></a><a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f">01261</a>         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">mlnorm&lt;sq_T&gt;::set_parameters</a> ( <span class="keyword">const</span> mat &amp;A0, <span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> sq_T &amp;R0 )
939<a name="l01262"></a>01262         {
940<a name="l01263"></a>01263                 it_assert_debug ( A0.rows() ==mu0.length(),<span class="stringliteral">""</span> );
941<a name="l01264"></a>01264                 it_assert_debug ( A0.rows() ==R0.rows(),<span class="stringliteral">""</span> );
942<a name="l01265"></a>01265
943<a name="l01266"></a>01266                 <a class="code" href="classbdm_1_1mlnorm.html#6de45ab731143e70a94318df586c36ba" title="Internal epdf that arise by conditioning on rvc.">iepdf</a>-&gt;set_parameters(zeros(A0.rows()), R0);
944<a name="l01267"></a>01267                 A = A0;
945<a name="l01268"></a>01268                 mu_const = mu0;
946<a name="l01269"></a>01269                 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = A0.cols();
947<a name="l01270"></a>01270         }
948<a name="l01271"></a>01271
949<a name="l01272"></a>01272 <span class="comment">// template&lt;class sq_T&gt;</span>
950<a name="l01273"></a>01273 <span class="comment">// vec mlnorm&lt;sq_T&gt;::samplecond (const  vec &amp;cond, double &amp;lik ) {</span>
951<a name="l01274"></a>01274 <span class="comment">//      this-&gt;condition ( cond );</span>
952<a name="l01275"></a>01275 <span class="comment">//      vec smp = epdf.sample();</span>
953<a name="l01276"></a>01276 <span class="comment">//      lik = epdf.eval ( smp );</span>
954<a name="l01277"></a>01277 <span class="comment">//      return smp;</span>
955<a name="l01278"></a>01278 <span class="comment">// }</span>
956<a name="l01279"></a>01279
957<a name="l01280"></a>01280 <span class="comment">// template&lt;class sq_T&gt;</span>
958<a name="l01281"></a>01281 <span class="comment">// mat mlnorm&lt;sq_T&gt;::samplecond (const vec &amp;cond, vec &amp;lik, int n ) {</span>
959<a name="l01282"></a>01282 <span class="comment">//      int i;</span>
960<a name="l01283"></a>01283 <span class="comment">//      int dim = rv.count();</span>
961<a name="l01284"></a>01284 <span class="comment">//      mat Smp ( dim,n );</span>
962<a name="l01285"></a>01285 <span class="comment">//      vec smp ( dim );</span>
963<a name="l01286"></a>01286 <span class="comment">//      this-&gt;condition ( cond );</span>
964<a name="l01287"></a>01287 <span class="comment">//</span>
965<a name="l01288"></a>01288 <span class="comment">//      for ( i=0; i&lt;n; i++ ) {</span>
966<a name="l01289"></a>01289 <span class="comment">//              smp = epdf.sample();</span>
967<a name="l01290"></a>01290 <span class="comment">//              lik ( i ) = epdf.eval ( smp );</span>
968<a name="l01291"></a>01291 <span class="comment">//              Smp.set_col ( i ,smp );</span>
969<a name="l01292"></a>01292 <span class="comment">//      }</span>
970<a name="l01293"></a>01293 <span class="comment">//</span>
971<a name="l01294"></a>01294 <span class="comment">//      return Smp;</span>
972<a name="l01295"></a>01295 <span class="comment">// }</span>
973<a name="l01296"></a>01296
974<a name="l01297"></a>01297         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
975<a name="l01298"></a><a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">01298</a>         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">mlnorm&lt;sq_T&gt;::condition</a> ( <span class="keyword">const</span> vec &amp;cond )
976<a name="l01299"></a>01299         {
977<a name="l01300"></a>01300                 _mu = A*cond + mu_const;
978<a name="l01301"></a>01301 <span class="comment">//R is already assigned;</span>
979<a name="l01302"></a>01302         }
980<a name="l01303"></a>01303
981<a name="l01304"></a>01304         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
982<a name="l01305"></a><a class="code" href="classbdm_1_1enorm.html#c2996bdaffad38fbe0fc776db54c9d80">01305</a>         <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a>* <a class="code" href="classbdm_1_1enorm.html#c2996bdaffad38fbe0fc776db54c9d80" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">enorm&lt;sq_T&gt;::marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn )<span class="keyword"> const</span>
983<a name="l01306"></a>01306 <span class="keyword">        </span>{
984<a name="l01307"></a>01307                 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(), <span class="stringliteral">"rv description is not assigned"</span> );
985<a name="l01308"></a>01308                 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> );
986<a name="l01309"></a>01309
987<a name="l01310"></a>01310                 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,irvn ); <span class="comment">//select rows and columns of R</span>
988<a name="l01311"></a>01311
989<a name="l01312"></a>01312                 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a>* tmp = <span class="keyword">new</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a>;
990<a name="l01313"></a>01313                 tmp-&gt;<a class="code" href="classbdm_1_1epdf.html#f423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a> ( rvn );
991<a name="l01314"></a>01314                 tmp-&gt;set_parameters ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ), Rn );
992<a name="l01315"></a>01315                 <span class="keywordflow">return</span> tmp;
993<a name="l01316"></a>01316         }
994<a name="l01317"></a>01317
995<a name="l01318"></a>01318         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
996<a name="l01319"></a><a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26">01319</a>         <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>* <a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">enorm&lt;sq_T&gt;::condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn )<span class="keyword"> const</span>
997<a name="l01320"></a>01320 <span class="keyword">        </span>{
998<a name="l01321"></a>01321
999<a name="l01322"></a>01322                 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(),<span class="stringliteral">"rvs are not assigned"</span> );
1000<a name="l01323"></a>01323
1001<a name="l01324"></a>01324                 <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> rvc = <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#aec44dabdf0a6d90fbae95e1356eda39" title="Subtract another variable from the current one.">subt</a> ( rvn );
1002<a name="l01325"></a>01325                 it_assert_debug ( ( rvc._dsize() +rvn._dsize() ==<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>._dsize() ),<span class="stringliteral">"wrong rvn"</span> );
1003<a name="l01326"></a>01326                 <span class="comment">//Permutation vector of the new R</span>
1004<a name="l01327"></a>01327                 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> );
1005<a name="l01328"></a>01328                 ivec irvc = rvc.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> );
1006<a name="l01329"></a>01329                 ivec perm=concat ( irvn , irvc );
1007<a name="l01330"></a>01330                 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,perm );
1008<a name="l01331"></a>01331
1009<a name="l01332"></a>01332                 <span class="comment">//fixme - could this be done in general for all sq_T?</span>
1010<a name="l01333"></a>01333                 mat S=Rn.to_mat();
1011<a name="l01334"></a>01334                 <span class="comment">//fixme</span>
1012<a name="l01335"></a>01335                 <span class="keywordtype">int</span> n=rvn._dsize()-1;
1013<a name="l01336"></a>01336                 <span class="keywordtype">int</span> end=<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows()-1;
1014<a name="l01337"></a>01337                 mat S11 = S.get ( 0,n, 0, n );
1015<a name="l01338"></a>01338                 mat S12 = S.get ( 0, n , rvn._dsize(), end );
1016<a name="l01339"></a>01339                 mat S22 = S.get ( rvn._dsize(), end, rvn._dsize(), end );
1017<a name="l01340"></a>01340
1018<a name="l01341"></a>01341                 vec mu1 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn );
1019<a name="l01342"></a>01342                 vec mu2 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvc );
1020<a name="l01343"></a>01343                 mat A=S12*inv ( S22 );
1021<a name="l01344"></a>01344                 sq_T R_n ( S11 - A *S12.T() );
1022<a name="l01345"></a>01345
1023<a name="l01346"></a>01346                 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm&lt;sq_T&gt;</a>* tmp=<span class="keyword">new</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm&lt;sq_T&gt;</a> ( );
1024<a name="l01347"></a>01347                 tmp-&gt;set_rv ( rvn ); tmp-&gt;set_rvc ( rvc );
1025<a name="l01348"></a>01348                 tmp-&gt;set_parameters ( A,mu1-A*mu2,R_n );
1026<a name="l01349"></a>01349                 <span class="keywordflow">return</span> tmp;
1027<a name="l01350"></a>01350         }
1028<a name="l01351"></a>01351
1029<a name="l01353"></a>01353
1030<a name="l01354"></a>01354         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
1031<a name="l01355"></a>01355         std::ostream &amp;operator&lt;&lt; ( std::ostream &amp;os,  mlnorm&lt;sq_T&gt; &amp;ml )
1032<a name="l01356"></a>01356         {
1033<a name="l01357"></a>01357                 os &lt;&lt; <span class="stringliteral">"A:"</span>&lt;&lt; ml.A&lt;&lt;endl;
1034<a name="l01358"></a>01358                 os &lt;&lt; <span class="stringliteral">"mu:"</span>&lt;&lt; ml.mu_const&lt;&lt;endl;
1035<a name="l01359"></a>01359                 os &lt;&lt; <span class="stringliteral">"R:"</span> &lt;&lt; ml.iepdf-&gt;_R().to_mat() &lt;&lt;endl;
1036<a name="l01360"></a>01360                 <span class="keywordflow">return</span> os;
1037<a name="l01361"></a>01361         };
1038<a name="l01362"></a>01362
1039<a name="l01363"></a>01363 }
1040<a name="l01364"></a>01364 <span class="preprocessor">#endif //EF_H</span>
1041</pre></div></div>
1042<hr size="1"><address style="text-align: right;"><small>Generated on Wed Aug 5 00:06:47 2009 for mixpp by&nbsp;
1043<a href="http://www.doxygen.org/index.html">
1044<img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.9 </small></address>
1045</body>
1046</html>
Note: See TracBrowser for help on using the browser.