root/library/doc/html/exp__family_8h_source.html @ 591

Revision 591, 192.9 kB (checked in by smidl, 15 years ago)

doc

Line 
1<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
2<html xmlns="http://www.w3.org/1999/xhtml">
3<head>
4<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
5<title>mixpp: exp_family.h Source File</title>
6<link href="tabs.css" rel="stylesheet" type="text/css"/>
7<link href="doxygen.css" rel="stylesheet" type="text/css"/>
8</head>
9<body>
10<!-- Generated by Doxygen 1.6.1 -->
11<script type="text/javascript">
12<!--
13function changeDisplayState (e){
14  var num=this.id.replace(/[^[0-9]/g,'');
15  var button=this.firstChild;
16  var sectionDiv=document.getElementById('dynsection'+num);
17  if (sectionDiv.style.display=='none'||sectionDiv.style.display==''){
18    sectionDiv.style.display='block';
19    button.src='open.gif';
20  }else{
21    sectionDiv.style.display='none';
22    button.src='closed.gif';
23  }
24}
25function initDynSections(){
26  var divs=document.getElementsByTagName('div');
27  var sectionCounter=1;
28  for(var i=0;i<divs.length-1;i++){
29    if(divs[i].className=='dynheader'&&divs[i+1].className=='dynsection'){
30      var header=divs[i];
31      var section=divs[i+1];
32      var button=header.firstChild;
33      if (button!='IMG'){
34        divs[i].insertBefore(document.createTextNode(' '),divs[i].firstChild);
35        button=document.createElement('img');
36        divs[i].insertBefore(button,divs[i].firstChild);
37      }
38      header.style.cursor='pointer';
39      header.onclick=changeDisplayState;
40      header.id='dynheader'+sectionCounter;
41      button.src='closed.gif';
42      section.id='dynsection'+sectionCounter;
43      section.style.display='none';
44      section.style.marginLeft='14px';
45      sectionCounter++;
46    }
47  }
48}
49window.onload = initDynSections;
50-->
51</script>
52<div class="navigation" id="top">
53  <div class="tabs">
54    <ul>
55      <li><a href="main.html"><span>Main&nbsp;Page</span></a></li>
56      <li><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
57      <li><a href="annotated.html"><span>Classes</span></a></li>
58      <li class="current"><a href="files.html"><span>Files</span></a></li>
59    </ul>
60  </div>
61  <div class="tabs">
62    <ul>
63      <li><a href="files.html"><span>File&nbsp;List</span></a></li>
64      <li><a href="globals.html"><span>File&nbsp;Members</span></a></li>
65    </ul>
66  </div>
67<h1>exp_family.h</h1><a href="exp__family_8h.html">Go to the documentation of this file.</a><div class="fragment"><pre class="fragment"><a name="l00001"></a>00001
68<a name="l00013"></a>00013 <span class="preprocessor">#ifndef EF_H</span>
69<a name="l00014"></a>00014 <span class="preprocessor"></span><span class="preprocessor">#define EF_H</span>
70<a name="l00015"></a>00015 <span class="preprocessor"></span>
71<a name="l00016"></a>00016
72<a name="l00017"></a>00017 <span class="preprocessor">#include &quot;../shared_ptr.h&quot;</span>
73<a name="l00018"></a>00018 <span class="preprocessor">#include &quot;../base/bdmbase.h&quot;</span>
74<a name="l00019"></a>00019 <span class="preprocessor">#include &quot;../math/chmat.h&quot;</span>
75<a name="l00020"></a>00020
76<a name="l00021"></a>00021 <span class="keyword">namespace </span>bdm
77<a name="l00022"></a>00022 {
78<a name="l00023"></a>00023
79<a name="l00024"></a>00024
80<a name="l00026"></a>00026 <span class="keyword">extern</span> Uniform_RNG UniRNG;
81<a name="l00028"></a>00028 <span class="keyword">extern</span> Normal_RNG NorRNG;
82<a name="l00030"></a>00030 <span class="keyword">extern</span> Gamma_RNG GamRNG;
83<a name="l00031"></a>00031
84<a name="l00038"></a><a class="code" href="classbdm_1_1eEF.html">00038</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>
85<a name="l00039"></a>00039 {
86<a name="l00040"></a>00040         <span class="keyword">public</span>:
87<a name="l00041"></a>00041 <span class="comment">//      eEF() :epdf() {};</span>
88<a name="l00043"></a><a class="code" href="classbdm_1_1eEF.html#ad5459d472d0feca7cf1fb5f65c4b9ef4">00043</a> <span class="comment"></span>                <a class="code" href="classbdm_1_1eEF.html#ad5459d472d0feca7cf1fb5f65c4b9ef4" title="default constructor">eEF</a> () : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> () {};
89<a name="l00045"></a>00045                 <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#acd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>() <span class="keyword">const</span> = 0;
90<a name="l00046"></a>00046
91<a name="l00048"></a><a class="code" href="classbdm_1_1eEF.html#aa4135778ecd9ab774762936c82a097c6">00048</a>                 <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#aa4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> (<span class="keyword">const</span> vec &amp;val)<span class="keyword"> const </span>{
92<a name="l00049"></a>00049                         <a class="code" href="bdmerror_8h.html#a7c43f3a72afe68ab0c85663a1bb3521a" title="Unconditionally throw std::runtime_error.">bdm_error</a> (<span class="stringliteral">&quot;Not implemented&quot;</span>);
93<a name="l00050"></a>00050                         <span class="keywordflow">return</span> 0.0;
94<a name="l00051"></a>00051                 }
95<a name="l00052"></a>00052
96<a name="l00054"></a><a class="code" href="classbdm_1_1eEF.html#aa36d06ecdd6f4c79dc122510eaccc692">00054</a>                 <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#aa36d06ecdd6f4c79dc122510eaccc692" title="Evaluate normalized log-probability.">evallog</a> (<span class="keyword">const</span> vec &amp;val)<span class="keyword"> const </span>{
97<a name="l00055"></a>00055                         <span class="keywordtype">double</span> tmp;
98<a name="l00056"></a>00056                         tmp = <a class="code" href="classbdm_1_1eEF.html#aa4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> (val) - <a class="code" href="classbdm_1_1eEF.html#acd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>();
99<a name="l00057"></a>00057                         <span class="keywordflow">return</span> tmp;
100<a name="l00058"></a>00058                 }
101<a name="l00060"></a><a class="code" href="classbdm_1_1eEF.html#a6886c60b6b690e503913240db5de0c6f">00060</a>                 <span class="keyword">virtual</span> vec <a class="code" href="classbdm_1_1eEF.html#a6886c60b6b690e503913240db5de0c6f" title="Evaluate normalized log-probability for many samples.">evallog_m</a> (<span class="keyword">const</span> mat &amp;Val)<span class="keyword"> const </span>{
102<a name="l00061"></a>00061                         vec x (Val.cols());
103<a name="l00062"></a>00062                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; Val.cols();i++) {x (i) = <a class="code" href="classbdm_1_1eEF.html#aa4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> (Val.get_col (i)) ;}
104<a name="l00063"></a>00063                         <span class="keywordflow">return</span> x -<a class="code" href="classbdm_1_1eEF.html#acd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>();
105<a name="l00064"></a>00064                 }
106<a name="l00066"></a><a class="code" href="classbdm_1_1eEF.html#ad793f4fd6d0dcec5f16bff0ae45fc7d5">00066</a>                 <span class="keyword">virtual</span> vec <a class="code" href="classbdm_1_1eEF.html#ad793f4fd6d0dcec5f16bff0ae45fc7d5" title="Evaluate normalized log-probability for many samples.">evallog_m</a> (<span class="keyword">const</span> Array&lt;vec&gt; &amp;Val)<span class="keyword"> const </span>{
107<a name="l00067"></a>00067                         vec x (Val.length());
108<a name="l00068"></a>00068                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; Val.length();i++) {x (i) = <a class="code" href="classbdm_1_1eEF.html#aa4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> (Val (i)) ;}
109<a name="l00069"></a>00069                         <span class="keywordflow">return</span> x -<a class="code" href="classbdm_1_1eEF.html#acd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>();
110<a name="l00070"></a>00070                 }
111<a name="l00071"></a>00071
112<a name="l00073"></a><a class="code" href="classbdm_1_1eEF.html#acf38af29e8e3d650c640509a52396053">00073</a>                 <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEF.html#acf38af29e8e3d650c640509a52396053" title="Power of the density, used e.g. to flatten the density.">pow</a> (<span class="keywordtype">double</span> p) {
113<a name="l00074"></a>00074                         <a class="code" href="bdmerror_8h.html#a7c43f3a72afe68ab0c85663a1bb3521a" title="Unconditionally throw std::runtime_error.">bdm_error</a> (<span class="stringliteral">&quot;Not implemented&quot;</span>);
114<a name="l00075"></a>00075                 }
115<a name="l00076"></a>00076 };
116<a name="l00077"></a>00077
117<a name="l00078"></a>00078
118<a name="l00080"></a><a class="code" href="classbdm_1_1BMEF.html">00080</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a>
119<a name="l00081"></a>00081 {
120<a name="l00082"></a>00082         <span class="keyword">protected</span>:
121<a name="l00084"></a><a class="code" href="classbdm_1_1BMEF.html#a1331865e10fb1ccef65bb4c47fa3be64">00084</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#a1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;
122<a name="l00086"></a><a class="code" href="classbdm_1_1BMEF.html#a06e7b3ac03e10017d4288c76888e2865">00086</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#a06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;
123<a name="l00087"></a>00087         <span class="keyword">public</span>:
124<a name="l00089"></a><a class="code" href="classbdm_1_1BMEF.html#a2def512872ed8a4fc3b702371ec0be55">00089</a>                 <a class="code" href="classbdm_1_1BMEF.html#a2def512872ed8a4fc3b702371ec0be55" title="Default constructor (=empty constructor).">BMEF</a> (<span class="keywordtype">double</span> frg0 = 1.0) : <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> (), <a class="code" href="classbdm_1_1BMEF.html#a1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> (frg0) {}
125<a name="l00091"></a><a class="code" href="classbdm_1_1BMEF.html#a9662379513101405e159e76717104e62">00091</a>                 <a class="code" href="classbdm_1_1BMEF.html#a9662379513101405e159e76717104e62" title="Copy constructor.">BMEF</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> &amp;B) : <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> (B), <a class="code" href="classbdm_1_1BMEF.html#a1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> (B.<a class="code" href="classbdm_1_1BMEF.html#a1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>), <a class="code" href="classbdm_1_1BMEF.html#a06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> (B.<a class="code" href="classbdm_1_1BMEF.html#a06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>) {}
126<a name="l00093"></a><a class="code" href="classbdm_1_1BMEF.html#ad2b528b7a41ca67163152142f5404051">00093</a>                 <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#ad2b528b7a41ca67163152142f5404051" title="get statistics from another model">set_statistics</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* BM0) {
127<a name="l00094"></a>00094                         <a class="code" href="bdmerror_8h.html#a7c43f3a72afe68ab0c85663a1bb3521a" title="Unconditionally throw std::runtime_error.">bdm_error</a> (<span class="stringliteral">&quot;Not implemented&quot;</span>);
128<a name="l00095"></a>00095                 }
129<a name="l00096"></a>00096
130<a name="l00098"></a><a class="code" href="classbdm_1_1BMEF.html#abf58deb99af2a6cc674f13ff90300de6">00098</a>                 <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#abf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> (<span class="keyword">const</span> vec &amp;data, <span class="keyword">const</span> <span class="keywordtype">double</span> w) {};
131<a name="l00099"></a>00099                 <span class="comment">//original Bayes</span>
132<a name="l00100"></a>00100                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#abf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> (<span class="keyword">const</span> vec &amp;dt);
133<a name="l00101"></a>00101
134<a name="l00103"></a><a class="code" href="classbdm_1_1BMEF.html#ab2916a2e71a958665054473124d5e749">00103</a>                 <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#ab2916a2e71a958665054473124d5e749" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> * B) {
135<a name="l00104"></a>00104                         <a class="code" href="bdmerror_8h.html#a7c43f3a72afe68ab0c85663a1bb3521a" title="Unconditionally throw std::runtime_error.">bdm_error</a> (<span class="stringliteral">&quot;Not implemented&quot;</span>);
136<a name="l00105"></a>00105                 }
137<a name="l00106"></a>00106
138<a name="l00107"></a><a class="code" href="classbdm_1_1BMEF.html#a62d2e4691bed41a1efa6b9c2e35e5c67">00107</a>                 <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* <a class="code" href="classbdm_1_1BMEF.html#a62d2e4691bed41a1efa6b9c2e35e5c67">_copy_</a> ()<span class="keyword"> const </span>{
139<a name="l00108"></a>00108                         <a class="code" href="bdmerror_8h.html#a7c43f3a72afe68ab0c85663a1bb3521a" title="Unconditionally throw std::runtime_error.">bdm_error</a> (<span class="stringliteral">&quot;function _copy_ not implemented for this BM&quot;</span>);
140<a name="l00109"></a>00109                         <span class="keywordflow">return</span> NULL;
141<a name="l00110"></a>00110                 }
142<a name="l00111"></a>00111 };
143<a name="l00112"></a>00112
144<a name="l00113"></a>00113 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T, <span class="keyword">template</span> &lt;<span class="keyword">typename</span>&gt; <span class="keyword">class </span>TEpdf&gt;
145<a name="l00114"></a>00114 <span class="keyword">class </span>mlnorm;
146<a name="l00115"></a>00115
147<a name="l00121"></a>00121 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
148<a name="l00122"></a><a class="code" href="classbdm_1_1enorm.html">00122</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>
149<a name="l00123"></a>00123 {
150<a name="l00124"></a>00124         <span class="keyword">protected</span>:
151<a name="l00126"></a><a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7">00126</a>                 vec <a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7" title="mean value">mu</a>;
152<a name="l00128"></a><a class="code" href="classbdm_1_1enorm.html#a2d92dde696b2a7a5b10ddef5d22ba2c2">00128</a>                 sq_T <a class="code" href="classbdm_1_1enorm.html#a2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;
153<a name="l00129"></a>00129         <span class="keyword">public</span>:
154<a name="l00132"></a>00132
155<a name="l00133"></a>00133                 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> () : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> (), <a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7" title="mean value">mu</a> (), <a class="code" href="classbdm_1_1enorm.html#a2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> () {};
156<a name="l00134"></a>00134                 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> (<span class="keyword">const</span> vec &amp;<a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7" title="mean value">mu</a>, <span class="keyword">const</span> sq_T &amp;<a class="code" href="classbdm_1_1enorm.html#a2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>) {set_parameters (mu, R);}
157<a name="l00135"></a>00135                 <span class="keywordtype">void</span> set_parameters (<span class="keyword">const</span> vec &amp;<a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7" title="mean value">mu</a>, <span class="keyword">const</span> sq_T &amp;<a class="code" href="classbdm_1_1enorm.html#a2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>);
158<a name="l00136"></a>00136                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#a61bd470764020bea6e1ed35000f259e6">from_setting</a> (<span class="keyword">const</span> Setting &amp;root);
159<a name="l00137"></a><a class="code" href="classbdm_1_1enorm.html#a38eb17ecb75d94a50b6782fcf735cfea">00137</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#a38eb17ecb75d94a50b6782fcf735cfea" title="This method TODO.">validate</a>() {
160<a name="l00138"></a>00138                         <a class="code" href="bdmerror_8h.html#a89a0f906b242b79c5d3d342291b2cab4" title="Throw std::runtime_exception if t is not true and NDEBUG is not defined.">bdm_assert_debug</a> (<a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7" title="mean value">mu</a>.length() == <a class="code" href="classbdm_1_1enorm.html#a2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows(), <span class="stringliteral">&quot;parameters mismatch&quot;</span>);
161<a name="l00139"></a>00139                         <a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7" title="mean value">mu</a>.length();
162<a name="l00140"></a>00140                 }
163<a name="l00142"></a>00142
164<a name="l00145"></a>00145
165<a name="l00147"></a>00147                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#ad2e0d3a1e30ab3ab04df2d0c43ae74a2" title="dupdate in exponential form (not really handy)">dupdate</a> (mat &amp;v, <span class="keywordtype">double</span> nu = 1.0);
166<a name="l00148"></a>00148
167<a name="l00149"></a>00149                 vec <a class="code" href="classbdm_1_1enorm.html#ae1a48f52351ec3a349bd443b713b1766" title="Returns a sample,  from density .">sample</a>() <span class="keyword">const</span>;
168<a name="l00150"></a>00150
169<a name="l00151"></a>00151                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#ae13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">evallog_nn</a> (<span class="keyword">const</span> vec &amp;val) <span class="keyword">const</span>;
170<a name="l00152"></a>00152                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#a25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>;
171<a name="l00153"></a><a class="code" href="classbdm_1_1enorm.html#ab2fa2915c35366392fe9bb022ca1a600">00153</a>                 vec <a class="code" href="classbdm_1_1enorm.html#ab2fa2915c35366392fe9bb022ca1a600" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7" title="mean value">mu</a>;}
172<a name="l00154"></a><a class="code" href="classbdm_1_1enorm.html#a729c75ef0fa8abae03d58ad1f81e6773">00154</a>                 vec <a class="code" href="classbdm_1_1enorm.html#a729c75ef0fa8abae03d58ad1f81e6773" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> diag (<a class="code" href="classbdm_1_1enorm.html#a2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.to_mat());}
173<a name="l00155"></a>00155 <span class="comment">//      mlnorm&lt;sq_T&gt;* condition ( const RV &amp;rvn ) const ; &lt;=========== fails to cmpile. Why?</span>
174<a name="l00156"></a>00156                 <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;mpdf&gt;</a> <a class="code" href="classbdm_1_1enorm.html#a40201ca12c6900f7aeb493bb7c582e20" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn ) <span class="keyword">const</span>;
175<a name="l00157"></a>00157
176<a name="l00158"></a>00158                 <span class="comment">// target not typed to mlnorm&lt;sq_T, enorm&lt;sq_T&gt; &gt; &amp;</span>
177<a name="l00159"></a>00159                 <span class="comment">// because that doesn&apos;t compile (perhaps because we</span>
178<a name="l00160"></a>00160                 <span class="comment">// haven&apos;t finished defining enorm yet), but the type</span>
179<a name="l00161"></a>00161                 <span class="comment">// is required</span>
180<a name="l00162"></a>00162                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#a40201ca12c6900f7aeb493bb7c582e20" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn, <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling , where  is random variable, rv, and...">mpdf</a> &amp;target ) <span class="keyword">const</span>;
181<a name="l00163"></a>00163
182<a name="l00164"></a>00164                 <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;epdf&gt;</a> <a class="code" href="classbdm_1_1enorm.html#adcb739443669ba0a8faf634196284c08" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">marginal</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn ) <span class="keyword">const</span>;
183<a name="l00165"></a>00165                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#adcb739443669ba0a8faf634196284c08" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn, <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a> &amp;target ) <span class="keyword">const</span>;
184<a name="l00167"></a>00167
185<a name="l00170"></a>00170
186<a name="l00171"></a>00171                 vec&amp; _mu() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7" title="mean value">mu</a>;}
187<a name="l00172"></a>00172                 <span class="keyword">const</span> vec&amp; _mu()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7" title="mean value">mu</a>;}
188<a name="l00173"></a>00173                 <span class="keywordtype">void</span> set_mu (<span class="keyword">const</span> vec mu0) { <a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7" title="mean value">mu</a> = mu0;}
189<a name="l00174"></a>00174                 sq_T&amp; _R() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#a2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;}
190<a name="l00175"></a>00175                 <span class="keyword">const</span> sq_T&amp; _R()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#a2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;}
191<a name="l00177"></a>00177
192<a name="l00178"></a>00178 };
193<a name="l00179"></a>00179 <a class="code" href="user__info_8h.html#ab06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (enorm, chmat);
194<a name="l00180"></a>00180 SHAREDPTR2 ( enorm, chmat );
195<a name="l00181"></a>00181 <a class="code" href="user__info_8h.html#ab06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (enorm, ldmat);
196<a name="l00182"></a>00182 SHAREDPTR2 ( enorm, ldmat );
197<a name="l00183"></a>00183 <a class="code" href="user__info_8h.html#ab06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (enorm, fsqmat);
198<a name="l00184"></a>00184 SHAREDPTR2 ( enorm, fsqmat );
199<a name="l00185"></a>00185
200<a name="l00186"></a>00186
201<a name="l00193"></a><a class="code" href="classbdm_1_1egiw.html">00193</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>
202<a name="l00194"></a>00194 {
203<a name="l00195"></a>00195         <span class="keyword">protected</span>:
204<a name="l00197"></a><a class="code" href="classbdm_1_1egiw.html#aae56852845c6af176fd9017dbebbbd52">00197</a>                 <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1egiw.html#aae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>;
205<a name="l00199"></a><a class="code" href="classbdm_1_1egiw.html#a447eacf19d4f4083872686f044814dc4">00199</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#a447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;
206<a name="l00201"></a><a class="code" href="classbdm_1_1egiw.html#a23e4d78bea7e98840f3da30e76a2b57a">00201</a>                 <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#a23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>;
207<a name="l00203"></a><a class="code" href="classbdm_1_1egiw.html#a322414c32d9a21a006a5aab0311f64fd">00203</a>                 <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#a322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a>;
208<a name="l00204"></a>00204         <span class="keyword">public</span>:
209<a name="l00207"></a>00207                 <a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a>() : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>() {};
210<a name="l00208"></a>00208                 <a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> (<span class="keywordtype">int</span> dimx0, <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> V0, <span class="keywordtype">double</span> nu0 = -1.0) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>() {set_parameters (dimx0, V0, nu0);};
211<a name="l00209"></a>00209
212<a name="l00210"></a>00210                 <span class="keywordtype">void</span> set_parameters (<span class="keywordtype">int</span> dimx0, ldmat V0, <span class="keywordtype">double</span> nu0 = -1.0) {
213<a name="l00211"></a>00211                         <a class="code" href="classbdm_1_1egiw.html#a23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a> = dimx0;
214<a name="l00212"></a>00212                         <a class="code" href="classbdm_1_1egiw.html#a322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> = V0.rows() - <a class="code" href="classbdm_1_1egiw.html#a23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>;
215<a name="l00213"></a>00213                         <a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egiw.html#a23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a> * (<a class="code" href="classbdm_1_1egiw.html#a23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a> + <a class="code" href="classbdm_1_1egiw.html#a322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a>); <span class="comment">// size(R) + size(Theta)</span>
216<a name="l00214"></a>00214
217<a name="l00215"></a>00215                         <a class="code" href="classbdm_1_1egiw.html#aae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a> = V0;
218<a name="l00216"></a>00216                         <span class="keywordflow">if</span> (nu0 &lt; 0) {
219<a name="l00217"></a>00217                                 <a class="code" href="classbdm_1_1egiw.html#a447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> = 0.1 + <a class="code" href="classbdm_1_1egiw.html#a322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> + 2 * <a class="code" href="classbdm_1_1egiw.html#a23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a> + 2; <span class="comment">// +2 assures finite expected value of R</span>
220<a name="l00218"></a>00218                                 <span class="comment">// terms before that are sufficient for finite normalization</span>
221<a name="l00219"></a>00219                         } <span class="keywordflow">else</span> {
222<a name="l00220"></a>00220                                 <a class="code" href="classbdm_1_1egiw.html#a447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> = nu0;
223<a name="l00221"></a>00221                         }
224<a name="l00222"></a>00222                 }
225<a name="l00224"></a>00224
226<a name="l00225"></a>00225                 vec <a class="code" href="classbdm_1_1egiw.html#a920f21548b7a3723923dd108fe514c61" title="Returns a sample,  from density .">sample</a>() <span class="keyword">const</span>;
227<a name="l00226"></a>00226                 vec <a class="code" href="classbdm_1_1egiw.html#adf70c05f918c3a6f86d60f10c1fd6ba2" title="return expected value">mean</a>() <span class="keyword">const</span>;
228<a name="l00227"></a>00227                 vec <a class="code" href="classbdm_1_1egiw.html#ac1ecc406613cc2341225dc10c3d3b46a" title="return expected variance (not covariance!)">variance</a>() <span class="keyword">const</span>;
229<a name="l00228"></a>00228
230<a name="l00230"></a>00230                 vec <a class="code" href="classbdm_1_1egiw.html#a66d2ba9295c306012b309efcc9e516f0" title="LS estimate of .">est_theta</a>() <span class="keyword">const</span>;
231<a name="l00231"></a>00231
232<a name="l00233"></a>00233                 ldmat <a class="code" href="classbdm_1_1egiw.html#a88c321a2051d1afdbb31a098896a717b" title="Covariance of the LS estimate.">est_theta_cov</a>() <span class="keyword">const</span>;
233<a name="l00234"></a>00234
234<a name="l00236"></a>00236                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#ad2075aa2306648b3e4fe40bb86628d5c" title="expected values of the linear coefficient and the covariance matrix are written to...">mean_mat</a> (mat &amp;M, mat&amp;R) <span class="keyword">const</span>;
235<a name="l00238"></a>00238                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#abfb8e7c619b34ad804a73bff71742b5e" title="In this instance, val= [theta, r]. For multivariate instances, it is stored columnwise...">evallog_nn</a> (<span class="keyword">const</span> vec &amp;val) <span class="keyword">const</span>;
236<a name="l00239"></a>00239                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#a41d72ba7b2abc8a9a4209ffa98ed5633" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>;
237<a name="l00240"></a><a class="code" href="classbdm_1_1egiw.html#a8e610e95401a11baf34f65e16ecd87be">00240</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#a8e610e95401a11baf34f65e16ecd87be" title="Power of the density, used e.g. to flatten the density.">pow</a> (<span class="keywordtype">double</span> p) {V *= p;<a class="code" href="classbdm_1_1egiw.html#a447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> *= p;};
238<a name="l00241"></a>00241
239<a name="l00244"></a>00244
240<a name="l00245"></a>00245                 <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>&amp; _V() {<span class="keywordflow">return</span> V;}
241<a name="l00246"></a>00246                 <span class="keyword">const</span> ldmat&amp; _V()<span class="keyword"> const </span>{<span class="keywordflow">return</span> V;}
242<a name="l00247"></a>00247                 <span class="keywordtype">double</span>&amp; _nu()  {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#a447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;}
243<a name="l00248"></a>00248                 <span class="keyword">const</span> <span class="keywordtype">double</span>&amp; _nu()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#a447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;}
244<a name="l00249"></a><a class="code" href="classbdm_1_1egiw.html#a55b76ec75bd2df5ef9cab3be20a33bbb">00249</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#a55b76ec75bd2df5ef9cab3be20a33bbb">from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>) {
245<a name="l00250"></a>00250                         <a class="code" href="classbdm_1_1UI.html#acd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1egiw.html#a447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>, <span class="keyword">set</span>, <span class="stringliteral">&quot;nu&quot;</span>, UI::compulsory);
246<a name="l00251"></a>00251                         <a class="code" href="classbdm_1_1UI.html#acd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1egiw.html#a23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>, <span class="keyword">set</span>, <span class="stringliteral">&quot;dimx&quot;</span>, UI::compulsory);
247<a name="l00252"></a>00252                         mat V;
248<a name="l00253"></a>00253                         <a class="code" href="classbdm_1_1UI.html#acd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (V, <span class="keyword">set</span>, <span class="stringliteral">&quot;V&quot;</span>, UI::compulsory);
249<a name="l00254"></a>00254                         set_parameters (<a class="code" href="classbdm_1_1egiw.html#a23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>, V, <a class="code" href="classbdm_1_1egiw.html#a447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>);
250<a name="l00255"></a>00255                         <a class="code" href="classbdm_1_1shared__ptr.html" title="A naive implementation of roughly a subset of the std::tr1::shared_ptr spec.">shared_ptr&lt;RV&gt;</a> <a class="code" href="classbdm_1_1epdf.html#a62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> = UI::build&lt;RV&gt; (<span class="keyword">set</span>, <span class="stringliteral">&quot;rv&quot;</span>, UI::compulsory);
251<a name="l00256"></a>00256                         <a class="code" href="classbdm_1_1epdf.html#af423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a> (*rv);
252<a name="l00257"></a>00257                 }
253<a name="l00259"></a>00259 };
254<a name="l00260"></a>00260 <a class="code" href="user__info_8h.html#a4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a> ( egiw );
255<a name="l00261"></a>00261 SHAREDPTR ( egiw );
256<a name="l00262"></a>00262
257<a name="l00271"></a><a class="code" href="classbdm_1_1eDirich.html">00271</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>
258<a name="l00272"></a>00272 {
259<a name="l00273"></a>00273         <span class="keyword">protected</span>:
260<a name="l00275"></a><a class="code" href="classbdm_1_1eDirich.html#af25886a49b4667af61245de81c83b5d2">00275</a>                 vec <a class="code" href="classbdm_1_1eDirich.html#af25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>;
261<a name="l00276"></a>00276         <span class="keyword">public</span>:
262<a name="l00279"></a>00279
263<a name="l00280"></a>00280                 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> () : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> () {};
264<a name="l00281"></a>00281                 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> &amp;D0) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> () {set_parameters (D0.<a class="code" href="classbdm_1_1eDirich.html#af25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>);};
265<a name="l00282"></a>00282                 eDirich (<span class="keyword">const</span> vec &amp;beta0) {set_parameters (beta0);};
266<a name="l00283"></a>00283                 <span class="keywordtype">void</span> set_parameters (<span class="keyword">const</span> vec &amp;beta0) {
267<a name="l00284"></a>00284                         <a class="code" href="classbdm_1_1eDirich.html#af25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> = beta0;
268<a name="l00285"></a>00285                         <a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eDirich.html#af25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length();
269<a name="l00286"></a>00286                 }
270<a name="l00288"></a>00288
271<a name="l00289"></a><a class="code" href="classbdm_1_1eDirich.html#a3290613d31d58daa8a45a54b003871fc">00289</a>                 vec <a class="code" href="classbdm_1_1eDirich.html#a3290613d31d58daa8a45a54b003871fc" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const </span>{
272<a name="l00290"></a>00290                         <a class="code" href="bdmerror_8h.html#a7c43f3a72afe68ab0c85663a1bb3521a" title="Unconditionally throw std::runtime_error.">bdm_error</a> (<span class="stringliteral">&quot;Not implemented&quot;</span>);
273<a name="l00291"></a>00291                         <span class="keywordflow">return</span> vec();
274<a name="l00292"></a>00292                 }
275<a name="l00293"></a>00293
276<a name="l00294"></a><a class="code" href="classbdm_1_1eDirich.html#acb343355ec791298bb5a3404cd482fb6">00294</a>                 vec <a class="code" href="classbdm_1_1eDirich.html#acb343355ec791298bb5a3404cd482fb6" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#af25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> / sum (<a class="code" href="classbdm_1_1eDirich.html#af25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>);};
277<a name="l00295"></a><a class="code" href="classbdm_1_1eDirich.html#a43c547a2507e233706f92712d8c2aacc">00295</a>                 vec <a class="code" href="classbdm_1_1eDirich.html#a43c547a2507e233706f92712d8c2aacc" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordtype">double</span> gamma = sum (<a class="code" href="classbdm_1_1eDirich.html#af25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>); <span class="keywordflow">return</span> elem_mult (<a class="code" href="classbdm_1_1eDirich.html#af25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>, (<a class="code" href="classbdm_1_1eDirich.html#af25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> + 1)) / (gamma* (gamma + 1));}
278<a name="l00297"></a><a class="code" href="classbdm_1_1eDirich.html#ae09a24938e80c3d94b0ee842d1552318">00297</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#ae09a24938e80c3d94b0ee842d1552318" title="In this instance, val is ...">evallog_nn</a> (<span class="keyword">const</span> vec &amp;val)<span class="keyword"> const </span>{
279<a name="l00298"></a>00298                         <span class="keywordtype">double</span> tmp; tmp = (<a class="code" href="classbdm_1_1eDirich.html#af25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> - 1) * log (val);
280<a name="l00299"></a>00299                         <span class="keywordflow">return</span> tmp;
281<a name="l00300"></a>00300                 }
282<a name="l00301"></a>00301
283<a name="l00302"></a><a class="code" href="classbdm_1_1eDirich.html#a279a99f6266c82fe2273e83841f19eb2">00302</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#a279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a> ()<span class="keyword"> const </span>{
284<a name="l00303"></a>00303                         <span class="keywordtype">double</span> tmp;
285<a name="l00304"></a>00304                         <span class="keywordtype">double</span> gam = sum (<a class="code" href="classbdm_1_1eDirich.html#af25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>);
286<a name="l00305"></a>00305                         <span class="keywordtype">double</span> lgb = 0.0;
287<a name="l00306"></a>00306                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; <a class="code" href="classbdm_1_1eDirich.html#af25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length();i++) {lgb += lgamma (<a class="code" href="classbdm_1_1eDirich.html#af25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> (i));}
288<a name="l00307"></a>00307                         tmp = lgb - lgamma (gam);
289<a name="l00308"></a>00308                         <span class="keywordflow">return</span> tmp;
290<a name="l00309"></a>00309                 }
291<a name="l00310"></a>00310
292<a name="l00312"></a><a class="code" href="classbdm_1_1eDirich.html#a175e0add26d2105c28d8121eefb9e324">00312</a>                 vec&amp; <a class="code" href="classbdm_1_1eDirich.html#a175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>()  {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#af25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>;}
293<a name="l00314"></a>00314 };
294<a name="l00315"></a>00315
295<a name="l00317"></a><a class="code" href="classbdm_1_1multiBM.html">00317</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>
296<a name="l00318"></a>00318 {
297<a name="l00319"></a>00319         <span class="keyword">protected</span>:
298<a name="l00321"></a><a class="code" href="classbdm_1_1multiBM.html#a9ecc6878abbd20eb8d8e43b6ab3f941a">00321</a>                 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> <a class="code" href="classbdm_1_1multiBM.html#a9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;
299<a name="l00323"></a><a class="code" href="classbdm_1_1multiBM.html#a044263356944c92209eecd39a5187d25">00323</a>                 vec &amp;<a class="code" href="classbdm_1_1multiBM.html#a044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;
300<a name="l00324"></a>00324         <span class="keyword">public</span>:
301<a name="l00326"></a><a class="code" href="classbdm_1_1multiBM.html#ac4dd6d9522a8a605776d21bac9bd9daf">00326</a>                 <a class="code" href="classbdm_1_1multiBM.html#ac4dd6d9522a8a605776d21bac9bd9daf" title="Default constructor.">multiBM</a> () : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> (), <a class="code" href="classbdm_1_1multiBM.html#a9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> (), <a class="code" href="classbdm_1_1multiBM.html#a044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> (<a class="code" href="classbdm_1_1multiBM.html#a9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta()) {
302<a name="l00327"></a>00327                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1multiBM.html#a044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>.length() &gt; 0) {<a class="code" href="classbdm_1_1BMEF.html#a06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> = <a class="code" href="classbdm_1_1multiBM.html#a9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#a279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();}
303<a name="l00328"></a>00328                         <span class="keywordflow">else</span>{<a class="code" href="classbdm_1_1BMEF.html#a06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> = 0.0;}
304<a name="l00329"></a>00329                 }
305<a name="l00331"></a><a class="code" href="classbdm_1_1multiBM.html#ac4378cf8037f6bed29c74eea63344b31">00331</a>                 <a class="code" href="classbdm_1_1multiBM.html#ac4378cf8037f6bed29c74eea63344b31" title="Copy constructor.">multiBM</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> &amp;B) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> (B), <a class="code" href="classbdm_1_1multiBM.html#a9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> (B.<a class="code" href="classbdm_1_1multiBM.html#a9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>), <a class="code" href="classbdm_1_1multiBM.html#a044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> (<a class="code" href="classbdm_1_1multiBM.html#a9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta()) {}
306<a name="l00333"></a><a class="code" href="classbdm_1_1multiBM.html#adbe6b90d410dc062a233d1dc09eeba52">00333</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#adbe6b90d410dc062a233d1dc09eeba52" title="Sets sufficient statistics to match that of givefrom mB0.">set_statistics</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a>* mB0) {<span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* mB = <span class="keyword">dynamic_cast&lt;</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">&gt;</span> (mB0); <a class="code" href="classbdm_1_1multiBM.html#a044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> = mB-&gt;<a class="code" href="classbdm_1_1multiBM.html#a044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;}
307<a name="l00334"></a><a class="code" href="classbdm_1_1multiBM.html#a1e4bf41b61937fd80f34049742e23f95">00334</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#a1e4bf41b61937fd80f34049742e23f95" title="Incremental Bayes rule.">bayes</a> (<span class="keyword">const</span> vec &amp;dt) {
308<a name="l00335"></a>00335                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BMEF.html#a1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> &lt; 1.0) {<a class="code" href="classbdm_1_1multiBM.html#a044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> *= <a class="code" href="classbdm_1_1BMEF.html#a1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;<a class="code" href="classbdm_1_1BMEF.html#a06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> = <a class="code" href="classbdm_1_1multiBM.html#a9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#a279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();}
309<a name="l00336"></a>00336                         <a class="code" href="classbdm_1_1multiBM.html#a044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> += dt;
310<a name="l00337"></a>00337                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BM.html#afaff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>) {<a class="code" href="classbdm_1_1BM.html#a4064b6559d962633e4372b12f4cd204a" title="Logarithm of marginalized data likelihood.">ll</a> = <a class="code" href="classbdm_1_1multiBM.html#a9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#a279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>() - <a class="code" href="classbdm_1_1BMEF.html#a06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;}
311<a name="l00338"></a>00338                 }
312<a name="l00339"></a><a class="code" href="classbdm_1_1multiBM.html#ae157b607c1e3fa91d42aeea44458e2bf">00339</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1multiBM.html#ae157b607c1e3fa91d42aeea44458e2bf">logpred</a> (<span class="keyword">const</span> vec &amp;dt)<span class="keyword"> const </span>{
313<a name="l00340"></a>00340                         <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> pred (<a class="code" href="classbdm_1_1multiBM.html#a9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>);
314<a name="l00341"></a>00341                         vec &amp;<a class="code" href="classbdm_1_1multiBM.html#a044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> = pred.<a class="code" href="classbdm_1_1eDirich.html#a175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>();
315<a name="l00342"></a>00342
316<a name="l00343"></a>00343                         <span class="keywordtype">double</span> lll;
317<a name="l00344"></a>00344                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BMEF.html#a1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> &lt; 1.0)
318<a name="l00345"></a>00345                                 {beta *= <a class="code" href="classbdm_1_1BMEF.html#a1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;lll = pred.<a class="code" href="classbdm_1_1eDirich.html#a279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();}
319<a name="l00346"></a>00346                         <span class="keywordflow">else</span>
320<a name="l00347"></a>00347                                 <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BM.html#afaff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>) {lll = <a class="code" href="classbdm_1_1BMEF.html#a06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;}
321<a name="l00348"></a>00348                                 <span class="keywordflow">else</span>{lll = pred.<a class="code" href="classbdm_1_1eDirich.html#a279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();}
322<a name="l00349"></a>00349
323<a name="l00350"></a>00350                         beta += dt;
324<a name="l00351"></a>00351                         <span class="keywordflow">return</span> pred.<a class="code" href="classbdm_1_1eDirich.html#a279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>() - lll;
325<a name="l00352"></a>00352                 }
326<a name="l00353"></a>00353                 <span class="keywordtype">void</span> flatten (<span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* B) {
327<a name="l00354"></a>00354                         <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* E = <span class="keyword">dynamic_cast&lt;</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">&gt;</span> (B);
328<a name="l00355"></a>00355                         <span class="comment">// sum(beta) should be equal to sum(B.beta)</span>
329<a name="l00356"></a>00356                         <span class="keyword">const</span> vec &amp;Eb = E-&gt;<a class="code" href="classbdm_1_1multiBM.html#a044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;<span class="comment">//const_cast&lt;multiBM*&gt; ( E )-&gt;_beta();</span>
330<a name="l00357"></a>00357                         <a class="code" href="classbdm_1_1multiBM.html#a044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> *= (sum (Eb) / sum (<a class="code" href="classbdm_1_1multiBM.html#a044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>));
331<a name="l00358"></a>00358                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BM.html#afaff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>) {<a class="code" href="classbdm_1_1BMEF.html#a06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> = <a class="code" href="classbdm_1_1multiBM.html#a9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#a279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();}
332<a name="l00359"></a>00359                 }
333<a name="l00361"></a><a class="code" href="classbdm_1_1multiBM.html#a31ff93f89473f099e489b9e1dc8d9513">00361</a>                 <span class="keyword">const</span> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a>&amp; <a class="code" href="classbdm_1_1multiBM.html#a31ff93f89473f099e489b9e1dc8d9513" title="reimplemnetation of BM::posterior()">posterior</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1multiBM.html#a9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;};
334<a name="l00363"></a><a class="code" href="classbdm_1_1multiBM.html#a7a480eace4446661bacca94c57499f01">00363</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#a7a480eace4446661bacca94c57499f01" title="constructor function">set_parameters</a> (<span class="keyword">const</span> vec &amp;beta0) {
335<a name="l00364"></a>00364                         <a class="code" href="classbdm_1_1multiBM.html#a9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.set_parameters (beta0);
336<a name="l00365"></a>00365                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BM.html#afaff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>) {<a class="code" href="classbdm_1_1BMEF.html#a06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> = <a class="code" href="classbdm_1_1multiBM.html#a9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#a279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();}
337<a name="l00366"></a>00366                 }
338<a name="l00367"></a>00367 };
339<a name="l00368"></a>00368
340<a name="l00378"></a><a class="code" href="classbdm_1_1egamma.html">00378</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>
341<a name="l00379"></a>00379 {
342<a name="l00380"></a>00380         <span class="keyword">protected</span>:
343<a name="l00382"></a><a class="code" href="classbdm_1_1egamma.html#a0901ec983e66b8337aaa506e13b122fa">00382</a>                 vec <a class="code" href="classbdm_1_1egamma.html#a0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>;
344<a name="l00384"></a><a class="code" href="classbdm_1_1egamma.html#a457bfb1ccb2057df85073e519a15ccc1">00384</a>                 vec <a class="code" href="classbdm_1_1egamma.html#a457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>;
345<a name="l00385"></a>00385         <span class="keyword">public</span> :
346<a name="l00388"></a>00388                 <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> () : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> (), <a class="code" href="classbdm_1_1egamma.html#a0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a> (0), <a class="code" href="classbdm_1_1egamma.html#a457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a> (0) {};
347<a name="l00389"></a>00389                 <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> (<span class="keyword">const</span> vec &amp;a, <span class="keyword">const</span> vec &amp;b) {set_parameters (a, b);};
348<a name="l00390"></a>00390                 <span class="keywordtype">void</span> set_parameters (<span class="keyword">const</span> vec &amp;a, <span class="keyword">const</span> vec &amp;b) {<a class="code" href="classbdm_1_1egamma.html#a0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a> = a, <a class="code" href="classbdm_1_1egamma.html#a457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a> = b;<a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egamma.html#a0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length();};
349<a name="l00392"></a>00392
350<a name="l00393"></a>00393                 vec <a class="code" href="classbdm_1_1egamma.html#a6ed82f0fd05f6002487256d8e75a0bbd" title="Returns a sample,  from density .">sample</a>() <span class="keyword">const</span>;
351<a name="l00394"></a>00394                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#aa8e11e5a580ff42a1b205974c60768c6" title="Evaluate normalized log-probability.">evallog</a> (<span class="keyword">const</span> vec &amp;val) <span class="keyword">const</span>;
352<a name="l00395"></a>00395                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#a9a66cbd100e8520c769ccb3c451f86f8" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>;
353<a name="l00397"></a><a class="code" href="classbdm_1_1egamma.html#a0865cb3d6339fdc7410806cf70a329ed">00397</a>                 vec&amp; <a class="code" href="classbdm_1_1egamma.html#a0865cb3d6339fdc7410806cf70a329ed" title="Returns pointer to internal alpha. Potentially dengerous: use with care!">_alpha</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egamma.html#a0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>;}
354<a name="l00399"></a><a class="code" href="classbdm_1_1egamma.html#ac42cadd9cbd344caaa69b0b433cd16ca">00399</a>                 vec&amp; <a class="code" href="classbdm_1_1egamma.html#ac42cadd9cbd344caaa69b0b433cd16ca" title="Returns pointer to internal beta. Potentially dengerous: use with care!">_beta</a>() {<span class="keywordflow">return</span> beta;}
355<a name="l00400"></a><a class="code" href="classbdm_1_1egamma.html#a49d256c42cce14c6faa56ec242b57e85">00400</a>                 vec <a class="code" href="classbdm_1_1egamma.html#a49d256c42cce14c6faa56ec242b57e85" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div (<a class="code" href="classbdm_1_1egamma.html#a0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>, beta);}
356<a name="l00401"></a><a class="code" href="classbdm_1_1egamma.html#a36986cc01917cd0796fadc17125bdec1">00401</a>                 vec <a class="code" href="classbdm_1_1egamma.html#a36986cc01917cd0796fadc17125bdec1" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div (<a class="code" href="classbdm_1_1egamma.html#a0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>, elem_mult (beta, beta)); }
357<a name="l00402"></a>00402
358<a name="l00411"></a><a class="code" href="classbdm_1_1egamma.html#a8a6fd1a1c0190f3e0d95a2a1f99aafc1">00411</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egamma.html#a8a6fd1a1c0190f3e0d95a2a1f99aafc1">from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>) {
359<a name="l00412"></a>00412                         <a class="code" href="classbdm_1_1egamma.html#a8a6fd1a1c0190f3e0d95a2a1f99aafc1">epdf::from_setting</a> (<span class="keyword">set</span>); <span class="comment">// reads rv</span>
360<a name="l00413"></a>00413                         <a class="code" href="classbdm_1_1UI.html#acd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1egamma.html#a0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>, <span class="keyword">set</span>, <span class="stringliteral">&quot;alpha&quot;</span>, UI::compulsory);
361<a name="l00414"></a>00414                         <a class="code" href="classbdm_1_1UI.html#acd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (beta, <span class="keyword">set</span>, <span class="stringliteral">&quot;beta&quot;</span>, UI::compulsory);
362<a name="l00415"></a>00415                         <a class="code" href="classbdm_1_1egamma.html#ac3a8d8ae8ba79d0fb35036711fa7d127" title="This method TODO.">validate</a>();
363<a name="l00416"></a>00416                 }
364<a name="l00417"></a><a class="code" href="classbdm_1_1egamma.html#ac3a8d8ae8ba79d0fb35036711fa7d127">00417</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egamma.html#ac3a8d8ae8ba79d0fb35036711fa7d127" title="This method TODO.">validate</a>() {
365<a name="l00418"></a>00418                         <a class="code" href="bdmerror_8h.html#a89a0f906b242b79c5d3d342291b2cab4" title="Throw std::runtime_exception if t is not true and NDEBUG is not defined.">bdm_assert_debug</a> (<a class="code" href="classbdm_1_1egamma.html#a0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length() == beta.length(), <span class="stringliteral">&quot;parameters do not match&quot;</span>);
366<a name="l00419"></a>00419                         <a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egamma.html#a0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length();
367<a name="l00420"></a>00420                 }
368<a name="l00421"></a>00421 };
369<a name="l00422"></a>00422 <a class="code" href="user__info_8h.html#a4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a> (egamma);
370<a name="l00423"></a>00423 SHAREDPTR ( egamma );
371<a name="l00424"></a>00424
372<a name="l00441"></a><a class="code" href="classbdm_1_1eigamma.html">00441</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a>
373<a name="l00442"></a>00442 {
374<a name="l00443"></a>00443         <span class="keyword">protected</span>:
375<a name="l00444"></a>00444         <span class="keyword">public</span> :
376<a name="l00449"></a>00449
377<a name="l00450"></a><a class="code" href="classbdm_1_1eigamma.html#a3aff7bf25ddac27731c60826fcfd878f">00450</a>                 vec <a class="code" href="classbdm_1_1eigamma.html#a3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> 1.0 / <a class="code" href="classbdm_1_1eigamma.html#a3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample,  from density .">egamma::sample</a>();};
378<a name="l00452"></a><a class="code" href="classbdm_1_1eigamma.html#a46cecb295edbabd28120cb0f6f572bcb">00452</a>                 vec <a class="code" href="classbdm_1_1eigamma.html#a46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div (<a class="code" href="classbdm_1_1egamma.html#a457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>, <a class="code" href="classbdm_1_1egamma.html#a0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a> - 1);}
379<a name="l00453"></a><a class="code" href="classbdm_1_1eigamma.html#ac2c696f8c668e9f65392c9449f6a5133">00453</a>                 vec <a class="code" href="classbdm_1_1eigamma.html#ac2c696f8c668e9f65392c9449f6a5133" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{vec mea = <a class="code" href="classbdm_1_1eigamma.html#a46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>(); <span class="keywordflow">return</span> elem_div (elem_mult (mea, mea), <a class="code" href="classbdm_1_1egamma.html#a0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a> - 2);}
380<a name="l00454"></a>00454 };
381<a name="l00455"></a>00455 <span class="comment">/*</span>
382<a name="l00457"></a>00457 <span class="comment">class emix : public epdf {</span>
383<a name="l00458"></a>00458 <span class="comment">protected:</span>
384<a name="l00459"></a>00459 <span class="comment">        int n;</span>
385<a name="l00460"></a>00460 <span class="comment">        vec &amp;w;</span>
386<a name="l00461"></a>00461 <span class="comment">        Array&lt;epdf*&gt; Coms;</span>
387<a name="l00462"></a>00462 <span class="comment">public:</span>
388<a name="l00464"></a>00464 <span class="comment">        emix ( const RV &amp;rv, vec &amp;w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};</span>
389<a name="l00465"></a>00465 <span class="comment">        void set_parameters( int &amp;i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}</span>
390<a name="l00466"></a>00466 <span class="comment">        vec mean(){vec pom; for(int i=0;i&lt;n;i++){pom+=Coms(i)-&gt;mean()*w(i);} return pom;};</span>
391<a name="l00467"></a>00467 <span class="comment">};</span>
392<a name="l00468"></a>00468 <span class="comment">*/</span>
393<a name="l00469"></a>00469
394<a name="l00471"></a>00471
395<a name="l00472"></a><a class="code" href="classbdm_1_1euni.html">00472</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>
396<a name="l00473"></a>00473 {
397<a name="l00474"></a>00474         <span class="keyword">protected</span>:
398<a name="l00476"></a><a class="code" href="classbdm_1_1euni.html#aff7ce6a2ef5ef0015bbd1398bed12f32">00476</a>                 vec <a class="code" href="classbdm_1_1euni.html#aff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>;
399<a name="l00478"></a><a class="code" href="classbdm_1_1euni.html#acfad2dea4a62db6872bda8abd75f0de1">00478</a>                 vec <a class="code" href="classbdm_1_1euni.html#acfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>;
400<a name="l00480"></a><a class="code" href="classbdm_1_1euni.html#ad3c27e331f90c754d80228108de8ed4c">00480</a>                 vec <a class="code" href="classbdm_1_1euni.html#ad3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>;
401<a name="l00482"></a><a class="code" href="classbdm_1_1euni.html#a31bb13e8449a8eff35246d46dae35c20">00482</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#a31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>;
402<a name="l00484"></a><a class="code" href="classbdm_1_1euni.html#a3e63be48dd58659663ca60cd18700476">00484</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#a3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>;
403<a name="l00485"></a>00485         <span class="keyword">public</span>:
404<a name="l00488"></a>00488                 <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> () : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> () {}
405<a name="l00489"></a>00489                 <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> (<span class="keyword">const</span> vec &amp;low0, <span class="keyword">const</span> vec &amp;high0) {set_parameters (low0, high0);}
406<a name="l00490"></a>00490                 <span class="keywordtype">void</span> set_parameters (<span class="keyword">const</span> vec &amp;low0, <span class="keyword">const</span> vec &amp;high0) {
407<a name="l00491"></a>00491                         <a class="code" href="classbdm_1_1euni.html#ad3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> = high0 - low0;
408<a name="l00492"></a>00492                         <a class="code" href="bdmerror_8h.html#a89a0f906b242b79c5d3d342291b2cab4" title="Throw std::runtime_exception if t is not true and NDEBUG is not defined.">bdm_assert_debug</a> (min (<a class="code" href="classbdm_1_1euni.html#ad3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>) &gt; 0.0, <span class="stringliteral">&quot;bad support&quot;</span>);
409<a name="l00493"></a>00493                         <a class="code" href="classbdm_1_1euni.html#aff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> = low0;
410<a name="l00494"></a>00494                         <a class="code" href="classbdm_1_1euni.html#acfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a> = high0;
411<a name="l00495"></a>00495                         <a class="code" href="classbdm_1_1euni.html#a31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> = prod (1.0 / <a class="code" href="classbdm_1_1euni.html#ad3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>);
412<a name="l00496"></a>00496                         <a class="code" href="classbdm_1_1euni.html#a3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a> = log (<a class="code" href="classbdm_1_1euni.html#a31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>);
413<a name="l00497"></a>00497                         <a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1euni.html#aff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>.length();
414<a name="l00498"></a>00498                 }
415<a name="l00500"></a>00500
416<a name="l00501"></a><a class="code" href="classbdm_1_1euni.html#acaa07b8307bd793d5339d6583e0aba81">00501</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#acaa07b8307bd793d5339d6583e0aba81">evallog</a> (<span class="keyword">const</span> vec &amp;val)<span class="keyword"> const  </span>{
417<a name="l00502"></a>00502                         <span class="keywordflow">if</span> (any (val &lt; <a class="code" href="classbdm_1_1euni.html#aff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>) &amp;&amp; any (val &gt; <a class="code" href="classbdm_1_1euni.html#acfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>)) {<span class="keywordflow">return</span> inf;}
418<a name="l00503"></a>00503                         <span class="keywordflow">else</span> <span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#a3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>;
419<a name="l00504"></a>00504                 }
420<a name="l00505"></a><a class="code" href="classbdm_1_1euni.html#afc5df80359ead2918384b2004ce67194">00505</a>                 vec <a class="code" href="classbdm_1_1euni.html#afc5df80359ead2918384b2004ce67194" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const </span>{
421<a name="l00506"></a>00506                         vec smp (<a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>);
422<a name="l00507"></a>00507 <span class="preprocessor">#pragma omp critical</span>
423<a name="l00508"></a>00508 <span class="preprocessor"></span>                        UniRNG.sample_vector (<a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> , smp);
424<a name="l00509"></a>00509                         <span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#aff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> + elem_mult (<a class="code" href="classbdm_1_1euni.html#ad3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>, smp);
425<a name="l00510"></a>00510                 }
426<a name="l00512"></a><a class="code" href="classbdm_1_1euni.html#a46caa8c13aba2e6228f964208918b226">00512</a>                 vec <a class="code" href="classbdm_1_1euni.html#a46caa8c13aba2e6228f964208918b226" title="set values of low and high ">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> (<a class="code" href="classbdm_1_1euni.html#acfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a> -<a class="code" href="classbdm_1_1euni.html#aff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>) / 2.0;}
427<a name="l00513"></a><a class="code" href="classbdm_1_1euni.html#a951f932155111f6053c980f672b4c22c">00513</a>                 vec <a class="code" href="classbdm_1_1euni.html#a951f932155111f6053c980f672b4c22c" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> (pow (<a class="code" href="classbdm_1_1euni.html#acfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>, 2) + pow (<a class="code" href="classbdm_1_1euni.html#aff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>, 2) + elem_mult (<a class="code" href="classbdm_1_1euni.html#acfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>, <a class="code" href="classbdm_1_1euni.html#aff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>)) / 3.0;}
428<a name="l00522"></a><a class="code" href="classbdm_1_1euni.html#a77f5fef1f006fe056066da23b9e5f042">00522</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1euni.html#a77f5fef1f006fe056066da23b9e5f042">from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>) {
429<a name="l00523"></a>00523                         <a class="code" href="classbdm_1_1euni.html#a77f5fef1f006fe056066da23b9e5f042">epdf::from_setting</a> (<span class="keyword">set</span>); <span class="comment">// reads rv and rvc</span>
430<a name="l00524"></a>00524
431<a name="l00525"></a>00525                         <a class="code" href="classbdm_1_1UI.html#acd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1euni.html#acfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>, <span class="keyword">set</span>, <span class="stringliteral">&quot;high&quot;</span>, UI::compulsory);
432<a name="l00526"></a>00526                         <a class="code" href="classbdm_1_1UI.html#acd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1euni.html#aff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>, <span class="keyword">set</span>, <span class="stringliteral">&quot;low&quot;</span>, UI::compulsory);
433<a name="l00527"></a>00527                 }
434<a name="l00528"></a>00528 };
435<a name="l00529"></a>00529
436<a name="l00530"></a>00530
437<a name="l00536"></a>00536 <span class="keyword">template</span> &lt; <span class="keyword">class</span> sq_T, <span class="keyword">template</span> &lt;<span class="keyword">typename</span>&gt; <span class="keyword">class </span>TEpdf = enorm &gt;
438<a name="l00537"></a><a class="code" href="classbdm_1_1mlnorm.html">00537</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt; TEpdf&lt;sq_T&gt; &gt;
439<a name="l00538"></a>00538 {
440<a name="l00539"></a>00539         <span class="keyword">protected</span>:
441<a name="l00541"></a><a class="code" href="classbdm_1_1mlnorm.html#ac71bbf59fc732beb2b459d7117bd6e42">00541</a>                 mat <a class="code" href="classbdm_1_1mlnorm.html#ac71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a>;
442<a name="l00543"></a><a class="code" href="classbdm_1_1mlnorm.html#a831b50121cad10aa03a16682bd0c3ed6">00543</a>                 vec <a class="code" href="classbdm_1_1mlnorm.html#a831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>;
443<a name="l00544"></a>00544 <span class="comment">//                      vec&amp; _mu; //cached epdf.mu; !!!!!! WHY NOT?</span>
444<a name="l00545"></a>00545         <span class="keyword">public</span>:
445<a name="l00548"></a>00548                 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a>() : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt; TEpdf&lt;sq_T&gt; &gt;() {};
446<a name="l00549"></a>00549                 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> (<span class="keyword">const</span> mat &amp;<a class="code" href="classbdm_1_1mlnorm.html#ac71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a>, <span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> sq_T &amp;R) : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt; TEpdf&lt;sq_T&gt; &gt;() {
447<a name="l00550"></a>00550                         <a class="code" href="classbdm_1_1mlnorm.html#a04f7c6cda7b2f95161dd5fbcf15d1fd5" title="Set A and R.">set_parameters</a> (A, mu0, R);
448<a name="l00551"></a>00551                 }
449<a name="l00552"></a>00552
450<a name="l00554"></a><a class="code" href="classbdm_1_1mlnorm.html#a04f7c6cda7b2f95161dd5fbcf15d1fd5">00554</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#a04f7c6cda7b2f95161dd5fbcf15d1fd5" title="Set A and R.">set_parameters</a> (<span class="keyword">const</span>  mat &amp;A0, <span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> sq_T &amp;R0) {
451<a name="l00555"></a>00555                         <a class="code" href="bdmerror_8h.html#a89a0f906b242b79c5d3d342291b2cab4" title="Throw std::runtime_exception if t is not true and NDEBUG is not defined.">bdm_assert_debug</a> (A0.rows() == mu0.length(), <span class="stringliteral">&quot;mlnorm: A vs. mu mismatch&quot;</span>);
452<a name="l00556"></a>00556                         <a class="code" href="bdmerror_8h.html#a89a0f906b242b79c5d3d342291b2cab4" title="Throw std::runtime_exception if t is not true and NDEBUG is not defined.">bdm_assert_debug</a> (A0.rows() == R0.rows(), <span class="stringliteral">&quot;mlnorm: A vs. R mismatch&quot;</span>);
453<a name="l00557"></a>00557
454<a name="l00558"></a>00558                         this-&gt;<a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.set_parameters (zeros (A0.rows()), R0);
455<a name="l00559"></a>00559                         <a class="code" href="classbdm_1_1mlnorm.html#ac71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a> = A0;
456<a name="l00560"></a>00560                         <a class="code" href="classbdm_1_1mlnorm.html#a831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a> = mu0;
457<a name="l00561"></a>00561                         this-&gt;<a class="code" href="classbdm_1_1mpdf.html#a7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = A0.cols();
458<a name="l00562"></a>00562                 }
459<a name="l00565"></a><a class="code" href="classbdm_1_1mlnorm.html#ac2895ae549ee76d961be98d7061bd110">00565</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#ac2895ae549ee76d961be98d7061bd110">condition</a> (<span class="keyword">const</span> vec &amp;cond) {
460<a name="l00566"></a>00566                         this-&gt;<a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>._mu() = <a class="code" href="classbdm_1_1mlnorm.html#ac71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a> * cond + <a class="code" href="classbdm_1_1mlnorm.html#a831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>;
461<a name="l00567"></a>00567 <span class="comment">//R is already assigned;</span>
462<a name="l00568"></a>00568                 }
463<a name="l00569"></a>00569
464<a name="l00571"></a><a class="code" href="classbdm_1_1mlnorm.html#a6332e5200f3afa15db3f7f4bca09b17f">00571</a>                 vec&amp; <a class="code" href="classbdm_1_1mlnorm.html#a6332e5200f3afa15db3f7f4bca09b17f" title="access function">_mu_const</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1mlnorm.html#a831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>;}
465<a name="l00573"></a><a class="code" href="classbdm_1_1mlnorm.html#ab256b547c5156b5898a3a1e5462f9540">00573</a>                 mat&amp; <a class="code" href="classbdm_1_1mlnorm.html#ab256b547c5156b5898a3a1e5462f9540" title="access function">_A</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1mlnorm.html#ac71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a>;}
466<a name="l00575"></a><a class="code" href="classbdm_1_1mlnorm.html#a564715dea56f7bbff0083aec295ce97e">00575</a>                 mat <a class="code" href="classbdm_1_1mlnorm.html#a564715dea56f7bbff0083aec295ce97e" title="access function">_R</a>() { <span class="keywordflow">return</span> this-&gt;<a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>._R().to_mat(); }
467<a name="l00576"></a>00576
468<a name="l00578"></a>00578                 <span class="keyword">template</span>&lt;<span class="keyword">typename</span> sq_M&gt;
469<a name="l00579"></a>00579                 <span class="keyword">friend</span> std::ostream &amp;operator&lt;&lt; (std::ostream &amp;os,  mlnorm&lt;sq_M, enorm&gt; &amp;ml);
470<a name="l00580"></a>00580
471<a name="l00581"></a><a class="code" href="classbdm_1_1mlnorm.html#a52980f13d80162d00b30d5864343f564">00581</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#a52980f13d80162d00b30d5864343f564">from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>) {
472<a name="l00582"></a>00582                         <a class="code" href="classbdm_1_1mlnorm.html#a52980f13d80162d00b30d5864343f564">mpdf::from_setting</a> (<span class="keyword">set</span>);
473<a name="l00583"></a>00583
474<a name="l00584"></a>00584                         <a class="code" href="classbdm_1_1UI.html#acd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1mlnorm.html#ac71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a>, <span class="keyword">set</span>, <span class="stringliteral">&quot;A&quot;</span>, UI::compulsory);
475<a name="l00585"></a>00585                         <a class="code" href="classbdm_1_1UI.html#acd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1mlnorm.html#a831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>, <span class="keyword">set</span>, <span class="stringliteral">&quot;const&quot;</span>, UI::compulsory);
476<a name="l00586"></a>00586                         mat R0;
477<a name="l00587"></a>00587                         <a class="code" href="classbdm_1_1UI.html#acd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (R0, <span class="keyword">set</span>, <span class="stringliteral">&quot;R&quot;</span>, UI::compulsory);
478<a name="l00588"></a>00588                         <a class="code" href="classbdm_1_1mlnorm.html#a04f7c6cda7b2f95161dd5fbcf15d1fd5" title="Set A and R.">set_parameters</a> (<a class="code" href="classbdm_1_1mlnorm.html#ac71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a>, <a class="code" href="classbdm_1_1mlnorm.html#a831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>, R0);
479<a name="l00589"></a>00589                 };
480<a name="l00590"></a>00590 };
481<a name="l00591"></a>00591 <a class="code" href="user__info_8h.html#ab06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (mlnorm,ldmat);
482<a name="l00592"></a>00592 SHAREDPTR2 ( mlnorm, ldmat );
483<a name="l00593"></a>00593 <a class="code" href="user__info_8h.html#ab06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (mlnorm,fsqmat);
484<a name="l00594"></a>00594 SHAREDPTR2 ( mlnorm, fsqmat );
485<a name="l00595"></a>00595 <a class="code" href="user__info_8h.html#ab06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (mlnorm, chmat);
486<a name="l00596"></a>00596 SHAREDPTR2 ( mlnorm, chmat );
487<a name="l00597"></a>00597
488<a name="l00599"></a>00599 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
489<a name="l00600"></a><a class="code" href="classbdm_1_1mgnorm.html">00600</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgnorm.html" title="Mpdf with general function for mean value.">mgnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt; enorm&lt; sq_T &gt; &gt;
490<a name="l00601"></a>00601 {
491<a name="l00602"></a>00602         <span class="keyword">private</span>:
492<a name="l00603"></a>00603 <span class="comment">//                      vec &amp;mu; WHY NOT?</span>
493<a name="l00604"></a>00604                 <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;fnc&gt;</a> g;
494<a name="l00605"></a>00605
495<a name="l00606"></a>00606         <span class="keyword">public</span>:
496<a name="l00608"></a><a class="code" href="classbdm_1_1mgnorm.html#a1b014915d74470d3efab74e07cacb97d">00608</a>                 <a class="code" href="classbdm_1_1mgnorm.html#a1b014915d74470d3efab74e07cacb97d" title="default constructor">mgnorm</a>() : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;<a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a>&lt;sq_T&gt; &gt;() { }
497<a name="l00610"></a>00610                 <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#ab736332d20e418bf50d45836e129f339" title="set mean function">set_parameters</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;fnc&gt;</a> &amp;g0, <span class="keyword">const</span> sq_T &amp;R0);
498<a name="l00611"></a>00611                 <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#ab31d63472cf6a1030cd8dbd8094c1f6d">condition</a> (<span class="keyword">const</span> vec &amp;cond);
499<a name="l00612"></a>00612
500<a name="l00613"></a>00613
501<a name="l00641"></a><a class="code" href="classbdm_1_1mgnorm.html#ad717dacc6a9eb967f8410994dc6dc6f9">00641</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#ad717dacc6a9eb967f8410994dc6dc6f9">from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>) {
502<a name="l00642"></a>00642                         <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;fnc&gt;</a> g = UI::build&lt;fnc&gt; (<span class="keyword">set</span>, <span class="stringliteral">&quot;g&quot;</span>, UI::compulsory);
503<a name="l00643"></a>00643
504<a name="l00644"></a>00644                         mat R;
505<a name="l00645"></a>00645                         vec dR;
506<a name="l00646"></a>00646                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1UI.html#acd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (dR, <span class="keyword">set</span>, <span class="stringliteral">&quot;dR&quot;</span>))
507<a name="l00647"></a>00647                                 R = diag (dR);
508<a name="l00648"></a>00648                         <span class="keywordflow">else</span>
509<a name="l00649"></a>00649                                 <a class="code" href="classbdm_1_1UI.html#acd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (R, <span class="keyword">set</span>, <span class="stringliteral">&quot;R&quot;</span>, UI::compulsory);
510<a name="l00650"></a>00650
511<a name="l00651"></a>00651                         <a class="code" href="classbdm_1_1mgnorm.html#ab736332d20e418bf50d45836e129f339" title="set mean function">set_parameters</a> (g, R);
512<a name="l00652"></a>00652                 }
513<a name="l00653"></a>00653 };
514<a name="l00654"></a>00654
515<a name="l00655"></a>00655 <a class="code" href="user__info_8h.html#ab06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (mgnorm, chmat);
516<a name="l00656"></a>00656 SHAREDPTR2 ( mgnorm, chmat );
517<a name="l00657"></a>00657
518<a name="l00658"></a>00658
519<a name="l00666"></a><a class="code" href="classbdm_1_1mlstudent.html">00666</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a>&lt;ldmat, enorm&gt;
520<a name="l00667"></a>00667 {
521<a name="l00668"></a>00668         <span class="keyword">protected</span>:
522<a name="l00670"></a><a class="code" href="classbdm_1_1mlstudent.html#a41595144a79594acbe288c6b59412657">00670</a>                 <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1mlstudent.html#a41595144a79594acbe288c6b59412657" title="Variable  from theory.">Lambda</a>;
523<a name="l00672"></a><a class="code" href="classbdm_1_1mlstudent.html#a72e9bda4d6684e07faafc4b2192daf39">00672</a>                 <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &amp;<a class="code" href="classbdm_1_1mlnorm.html#a564715dea56f7bbff0083aec295ce97e" title="access function">_R</a>;
524<a name="l00674"></a><a class="code" href="classbdm_1_1mlstudent.html#a1c063ad6cb6e079ee11bc4128c2c9fe8">00674</a>                 <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1mlstudent.html#a1c063ad6cb6e079ee11bc4128c2c9fe8" title="Variable .">Re</a>;
525<a name="l00675"></a>00675         <span class="keyword">public</span>:
526<a name="l00676"></a>00676                 <a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> () : <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a>&lt;<a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>, <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a>&gt; (),
527<a name="l00677"></a>00677                                 <a class="code" href="classbdm_1_1mlstudent.html#a41595144a79594acbe288c6b59412657" title="Variable  from theory.">Lambda</a> (),      <a class="code" href="classbdm_1_1mlnorm.html#a564715dea56f7bbff0083aec295ce97e" title="access function">_R</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1mlnorm.html#a564715dea56f7bbff0083aec295ce97e" title="access function">_R</a>()) {}
528<a name="l00679"></a><a class="code" href="classbdm_1_1mlstudent.html#a4cdf79aac1b2165c0290e73810a0e4a3">00679</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlstudent.html#a4cdf79aac1b2165c0290e73810a0e4a3" title="constructor function">set_parameters</a> (<span class="keyword">const</span> mat &amp;A0, <span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &amp;R0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>&amp; Lambda0) {
529<a name="l00680"></a>00680                         <a class="code" href="bdmerror_8h.html#a89a0f906b242b79c5d3d342291b2cab4" title="Throw std::runtime_exception if t is not true and NDEBUG is not defined.">bdm_assert_debug</a> (A0.rows() == mu0.length(), <span class="stringliteral">&quot;mlstudent: A vs. mu mismatch&quot;</span>);
530<a name="l00681"></a>00681                         <a class="code" href="bdmerror_8h.html#a89a0f906b242b79c5d3d342291b2cab4" title="Throw std::runtime_exception if t is not true and NDEBUG is not defined.">bdm_assert_debug</a> (R0.<a class="code" href="classbdm_1_1sqmat.html#a73e639221343dcce76c3305524d67590" title="Reimplementing common functions of mat: rows().">rows</a>() == A0.rows(), <span class="stringliteral">&quot;mlstudent: A vs. R mismatch&quot;</span>);
531<a name="l00682"></a>00682
532<a name="l00683"></a>00683                         <a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.set_parameters (mu0, R0);<span class="comment">// was Lambda, why?</span>
533<a name="l00684"></a>00684                         <a class="code" href="classbdm_1_1mlnorm.html#ac71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a> = A0;
534<a name="l00685"></a>00685                         <a class="code" href="classbdm_1_1mlnorm.html#a831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a> = mu0;
535<a name="l00686"></a>00686                         <a class="code" href="classbdm_1_1mlstudent.html#a1c063ad6cb6e079ee11bc4128c2c9fe8" title="Variable .">Re</a> = R0;
536<a name="l00687"></a>00687                         <a class="code" href="classbdm_1_1mlstudent.html#a41595144a79594acbe288c6b59412657" title="Variable  from theory.">Lambda</a> = Lambda0;
537<a name="l00688"></a>00688                 }
538<a name="l00689"></a><a class="code" href="classbdm_1_1mlstudent.html#aefd37560585c8613897f30d3c2f58d0d">00689</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlstudent.html#aefd37560585c8613897f30d3c2f58d0d">condition</a> (<span class="keyword">const</span> vec &amp;cond) {
539<a name="l00690"></a>00690                         <a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>._mu() = <a class="code" href="classbdm_1_1mlnorm.html#ac71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a> * cond + <a class="code" href="classbdm_1_1mlnorm.html#a831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>;
540<a name="l00691"></a>00691                         <span class="keywordtype">double</span> zeta;
541<a name="l00692"></a>00692                         <span class="comment">//ugly hack!</span>
542<a name="l00693"></a>00693                         <span class="keywordflow">if</span> ( (cond.length() + 1) == <a class="code" href="classbdm_1_1mlstudent.html#a41595144a79594acbe288c6b59412657" title="Variable  from theory.">Lambda</a>.<a class="code" href="classbdm_1_1sqmat.html#a73e639221343dcce76c3305524d67590" title="Reimplementing common functions of mat: rows().">rows</a>()) {
543<a name="l00694"></a>00694                                 zeta = <a class="code" href="classbdm_1_1mlstudent.html#a41595144a79594acbe288c6b59412657" title="Variable  from theory.">Lambda</a>.<a class="code" href="classbdm_1_1ldmat.html#af743de194aadb8515cf18226fadf365f" title="Evaluates quadratic form ;.">invqform</a> (concat (cond, vec_1 (1.0)));
544<a name="l00695"></a>00695                         } <span class="keywordflow">else</span> {
545<a name="l00696"></a>00696                                 zeta = <a class="code" href="classbdm_1_1mlstudent.html#a41595144a79594acbe288c6b59412657" title="Variable  from theory.">Lambda</a>.<a class="code" href="classbdm_1_1ldmat.html#af743de194aadb8515cf18226fadf365f" title="Evaluates quadratic form ;.">invqform</a> (cond);
546<a name="l00697"></a>00697                         }
547<a name="l00698"></a>00698                         <a class="code" href="classbdm_1_1mlnorm.html#a564715dea56f7bbff0083aec295ce97e" title="access function">_R</a> = <a class="code" href="classbdm_1_1mlstudent.html#a1c063ad6cb6e079ee11bc4128c2c9fe8" title="Variable .">Re</a>;
548<a name="l00699"></a>00699                         <a class="code" href="classbdm_1_1mlnorm.html#a564715dea56f7bbff0083aec295ce97e" title="access function">_R</a> *= (1 + zeta);<span class="comment">// / ( nu ); &lt;&lt; nu is in Re!!!!!!</span>
549<a name="l00700"></a>00700                 };
550<a name="l00701"></a>00701
551<a name="l00702"></a>00702 };
552<a name="l00712"></a><a class="code" href="classbdm_1_1mgamma.html">00712</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;egamma&gt;
553<a name="l00713"></a>00713 {
554<a name="l00714"></a>00714         <span class="keyword">protected</span>:
555<a name="l00715"></a>00715
556<a name="l00717"></a><a class="code" href="classbdm_1_1mgamma.html#ab20cf88cca1fe9b0b8f2a412608bfd09">00717</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#ab20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>;
557<a name="l00718"></a>00718
558<a name="l00720"></a><a class="code" href="classbdm_1_1mgamma.html#a3d95f4dde9214ff6dba265e18af60312">00720</a>                 vec &amp;<a class="code" href="classbdm_1_1mgamma.html#a3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a>;
559<a name="l00721"></a>00721
560<a name="l00722"></a>00722         <span class="keyword">public</span>:
561<a name="l00724"></a><a class="code" href="classbdm_1_1mgamma.html#a1a9dc8661e5b214a8185d6e6b9956eb1">00724</a>                 <a class="code" href="classbdm_1_1mgamma.html#a1a9dc8661e5b214a8185d6e6b9956eb1" title="Constructor.">mgamma</a>() : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;<a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a>&gt;(), <a class="code" href="classbdm_1_1mgamma.html#ab20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a> (0),
562<a name="l00725"></a>00725                                 <a class="code" href="classbdm_1_1mgamma.html#a3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1mgamma.html#a3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a>()) {
563<a name="l00726"></a>00726                 }
564<a name="l00727"></a>00727
565<a name="l00729"></a>00729                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#aa0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a> (<span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#ab20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, <span class="keyword">const</span> vec &amp;beta0);
566<a name="l00730"></a>00730
567<a name="l00731"></a><a class="code" href="classbdm_1_1mgamma.html#a8996500f1885e39cde30221b20900bff">00731</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#a8996500f1885e39cde30221b20900bff">condition</a> (<span class="keyword">const</span> vec &amp;val) {<a class="code" href="classbdm_1_1mgamma.html#a3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a> = <a class="code" href="classbdm_1_1mgamma.html#ab20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a> / val;};
568<a name="l00741"></a><a class="code" href="classbdm_1_1mgamma.html#ada2af0f327e5452bee71d1bf97452ae4">00741</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#ada2af0f327e5452bee71d1bf97452ae4">from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>) {
569<a name="l00742"></a>00742                         <a class="code" href="classbdm_1_1mgamma.html#ada2af0f327e5452bee71d1bf97452ae4">mpdf::from_setting</a> (<span class="keyword">set</span>); <span class="comment">// reads rv and rvc</span>
570<a name="l00743"></a>00743                         vec betatmp; <span class="comment">// ugly but necessary</span>
571<a name="l00744"></a>00744                         <a class="code" href="classbdm_1_1UI.html#acd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (betatmp, <span class="keyword">set</span>, <span class="stringliteral">&quot;beta&quot;</span>, UI::compulsory);
572<a name="l00745"></a>00745                         <a class="code" href="classbdm_1_1UI.html#acd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1mgamma.html#ab20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, <span class="keyword">set</span>, <span class="stringliteral">&quot;k&quot;</span>, UI::compulsory);
573<a name="l00746"></a>00746                         <a class="code" href="classbdm_1_1mgamma.html#aa0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a> (<a class="code" href="classbdm_1_1mgamma.html#ab20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, betatmp);
574<a name="l00747"></a>00747                 }
575<a name="l00748"></a>00748 };
576<a name="l00749"></a>00749 <a class="code" href="user__info_8h.html#a4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a> (mgamma);
577<a name="l00750"></a>00750 SHAREDPTR (mgamma);
578<a name="l00751"></a>00751
579<a name="l00761"></a><a class="code" href="classbdm_1_1migamma.html">00761</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;eigamma&gt;
580<a name="l00762"></a>00762 {
581<a name="l00763"></a>00763         <span class="keyword">protected</span>:
582<a name="l00765"></a><a class="code" href="classbdm_1_1migamma.html#adc56bc9da542e0103ec16b9be8e5e38c">00765</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma.html#adc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>;
583<a name="l00766"></a>00766
584<a name="l00768"></a><a class="code" href="classbdm_1_1migamma.html#ac9847093da59a9ba0ebb68d2c592f5dc">00768</a>                 vec &amp;<a class="code" href="classbdm_1_1migamma.html#ac9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a>;
585<a name="l00769"></a>00769
586<a name="l00771"></a><a class="code" href="classbdm_1_1migamma.html#a0d854c047001b5465cf1ba21f52904b5">00771</a>                 vec &amp;<a class="code" href="classbdm_1_1migamma.html#a0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a>;
587<a name="l00772"></a>00772
588<a name="l00773"></a>00773         <span class="keyword">public</span>:
589<a name="l00776"></a>00776                 <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a>() : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;<a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a>&gt;(),
590<a name="l00777"></a>00777                                 <a class="code" href="classbdm_1_1migamma.html#adc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a> (0),
591<a name="l00778"></a>00778                                 <a class="code" href="classbdm_1_1migamma.html#ac9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1migamma.html#ac9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a>()),
592<a name="l00779"></a>00779                                 <a class="code" href="classbdm_1_1migamma.html#a0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1migamma.html#a0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a>()) {
593<a name="l00780"></a>00780                 }
594<a name="l00781"></a>00781
595<a name="l00782"></a>00782                 <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> &amp;m) : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;<a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a>&gt;(),
596<a name="l00783"></a>00783                                 <a class="code" href="classbdm_1_1migamma.html#adc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a> (0),
597<a name="l00784"></a>00784                                 <a class="code" href="classbdm_1_1migamma.html#ac9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1migamma.html#ac9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a>()),
598<a name="l00785"></a>00785                                 <a class="code" href="classbdm_1_1migamma.html#a0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1migamma.html#a0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a>()) {
599<a name="l00786"></a>00786                 }
600<a name="l00788"></a>00788
601<a name="l00790"></a><a class="code" href="classbdm_1_1migamma.html#a8b10ab922e2a7bae2fb6bb3efc7b6151">00790</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#a8b10ab922e2a7bae2fb6bb3efc7b6151" title="Set value of k.">set_parameters</a> (<span class="keywordtype">int</span> len, <span class="keywordtype">double</span> k0) {
602<a name="l00791"></a>00791                         <a class="code" href="classbdm_1_1migamma.html#adc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a> = k0;
603<a name="l00792"></a>00792                         <a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.set_parameters ( (1.0 / (<a class="code" href="classbdm_1_1migamma.html#adc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>*<a class="code" href="classbdm_1_1migamma.html#adc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>) + 2.0) *ones (len) <span class="comment">/*alpha*/</span>, ones (len) <span class="comment">/*beta*/</span>);
604<a name="l00793"></a>00793                         <a class="code" href="classbdm_1_1mpdf.html#a7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension();
605<a name="l00794"></a>00794                 };
606<a name="l00795"></a><a class="code" href="classbdm_1_1migamma.html#a7a34b1e2e3aa2250d7c0ed7df1665b8c">00795</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#a7a34b1e2e3aa2250d7c0ed7df1665b8c">condition</a> (<span class="keyword">const</span> vec &amp;val) {
607<a name="l00796"></a>00796                         <a class="code" href="classbdm_1_1migamma.html#a0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a> = elem_mult (val, (<a class="code" href="classbdm_1_1migamma.html#ac9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a> - 1.0));
608<a name="l00797"></a>00797                 };
609<a name="l00798"></a>00798 };
610<a name="l00799"></a>00799
611<a name="l00800"></a>00800
612<a name="l00812"></a><a class="code" href="classbdm_1_1mgamma__fix.html">00812</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma__fix.html" title="Gamma random walk around a fixed point.">mgamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a>
613<a name="l00813"></a>00813 {
614<a name="l00814"></a>00814         <span class="keyword">protected</span>:
615<a name="l00816"></a><a class="code" href="classbdm_1_1mgamma__fix.html#a1eb701506aabb2e6af007e487212d6fa">00816</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma__fix.html#a1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>;
616<a name="l00818"></a><a class="code" href="classbdm_1_1mgamma__fix.html#a018c6f901a04e419455308a07eb3b0b2">00818</a>                 vec <a class="code" href="classbdm_1_1mgamma__fix.html#a018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>;
617<a name="l00819"></a>00819         <span class="keyword">public</span>:
618<a name="l00821"></a><a class="code" href="classbdm_1_1mgamma__fix.html#a9a31bc9b4b60188a18a2a6b588dc4b2d">00821</a>                 <a class="code" href="classbdm_1_1mgamma__fix.html#a9a31bc9b4b60188a18a2a6b588dc4b2d" title="Constructor.">mgamma_fix</a> () : <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> (), <a class="code" href="classbdm_1_1mgamma__fix.html#a018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a> () {};
619<a name="l00823"></a><a class="code" href="classbdm_1_1mgamma__fix.html#a1bfd30e90db9dc1fbda4a9fbb0b716b2">00823</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#a1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">set_parameters</a> (<span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0) {
620<a name="l00824"></a>00824                         <a class="code" href="classbdm_1_1mgamma__fix.html#a1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">mgamma::set_parameters</a> (k0, ref0);
621<a name="l00825"></a>00825                         <a class="code" href="classbdm_1_1mgamma__fix.html#a018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a> = pow (ref0, 1.0 - l0);<a class="code" href="classbdm_1_1mgamma__fix.html#a1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a> = l0;
622<a name="l00826"></a>00826                         <a class="code" href="classbdm_1_1mpdf.html#a7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension();
623<a name="l00827"></a>00827                 };
624<a name="l00828"></a>00828
625<a name="l00829"></a><a class="code" href="classbdm_1_1mgamma__fix.html#a1d539591deb7a38bb3403c2b396c8ff7">00829</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#a1d539591deb7a38bb3403c2b396c8ff7">condition</a> (<span class="keyword">const</span> vec &amp;val) {vec mean = elem_mult (<a class="code" href="classbdm_1_1mgamma__fix.html#a018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>, pow (val, <a class="code" href="classbdm_1_1mgamma__fix.html#a1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>)); <a class="code" href="classbdm_1_1mgamma.html#a3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a> = <a class="code" href="classbdm_1_1mgamma.html#ab20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a> / mean;};
626<a name="l00830"></a>00830 };
627<a name="l00831"></a>00831
628<a name="l00832"></a>00832
629<a name="l00845"></a><a class="code" href="classbdm_1_1migamma__ref.html">00845</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma__ref.html" title="Inverse-Gamma random walk around a fixed point.">migamma_ref</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a>
630<a name="l00846"></a>00846 {
631<a name="l00847"></a>00847         <span class="keyword">protected</span>:
632<a name="l00849"></a><a class="code" href="classbdm_1_1migamma__ref.html#acdc1345ba8375fbdb18a69322d2f841d">00849</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma__ref.html#acdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a>;
633<a name="l00851"></a><a class="code" href="classbdm_1_1migamma__ref.html#a3692dc67caf4367e15564d37f45476f6">00851</a>                 vec <a class="code" href="classbdm_1_1migamma__ref.html#a3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>;
634<a name="l00852"></a>00852         <span class="keyword">public</span>:
635<a name="l00854"></a><a class="code" href="classbdm_1_1migamma__ref.html#af45b15a10f084991ba6b48295f10421f">00854</a>                 <a class="code" href="classbdm_1_1migamma__ref.html#af45b15a10f084991ba6b48295f10421f" title="Constructor.">migamma_ref</a> () : <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> (), <a class="code" href="classbdm_1_1migamma__ref.html#a3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a> () {};
636<a name="l00856"></a><a class="code" href="classbdm_1_1migamma__ref.html#ab0b4eb278ef5d0831ec4954ba7bd2800">00856</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#ab0b4eb278ef5d0831ec4954ba7bd2800" title="Set value of k.">set_parameters</a> (<span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0) {
637<a name="l00857"></a>00857                         <a class="code" href="classbdm_1_1migamma__ref.html#ab0b4eb278ef5d0831ec4954ba7bd2800" title="Set value of k.">migamma::set_parameters</a> (ref0.length(), k0);
638<a name="l00858"></a>00858                         <a class="code" href="classbdm_1_1migamma__ref.html#a3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a> = pow (ref0, 1.0 - l0);
639<a name="l00859"></a>00859                         <a class="code" href="classbdm_1_1migamma__ref.html#acdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a> = l0;
640<a name="l00860"></a>00860                         <a class="code" href="classbdm_1_1mpdf.html#a7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension();
641<a name="l00861"></a>00861                 };
642<a name="l00862"></a>00862
643<a name="l00863"></a><a class="code" href="classbdm_1_1migamma__ref.html#aae86b2e4ff963d62e05d4e130514634a">00863</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#aae86b2e4ff963d62e05d4e130514634a">condition</a> (<span class="keyword">const</span> vec &amp;val) {
644<a name="l00864"></a>00864                         vec mean = elem_mult (<a class="code" href="classbdm_1_1migamma__ref.html#a3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>, pow (val, <a class="code" href="classbdm_1_1migamma__ref.html#acdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a>));
645<a name="l00865"></a>00865                         <a class="code" href="classbdm_1_1migamma__ref.html#aae86b2e4ff963d62e05d4e130514634a">migamma::condition</a> (mean);
646<a name="l00866"></a>00866                 };
647<a name="l00867"></a>00867
648<a name="l00888"></a>00888                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#a9e7e0f7d2aa9ecca8ec1af8cbcb5ef1d">from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>);
649<a name="l00889"></a>00889
650<a name="l00890"></a>00890                 <span class="comment">// TODO dodelat void to_setting( Setting &amp;set ) const;</span>
651<a name="l00891"></a>00891 };
652<a name="l00892"></a>00892
653<a name="l00893"></a>00893
654<a name="l00894"></a>00894 <a class="code" href="user__info_8h.html#a4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a> (migamma_ref);
655<a name="l00895"></a>00895 SHAREDPTR (migamma_ref);
656<a name="l00896"></a>00896
657<a name="l00906"></a><a class="code" href="classbdm_1_1elognorm.html">00906</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1elognorm.html">elognorm</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a>&lt;ldmat&gt;
658<a name="l00907"></a>00907 {
659<a name="l00908"></a>00908         <span class="keyword">public</span>:
660<a name="l00909"></a><a class="code" href="classbdm_1_1elognorm.html#a8b948e2bce1253765a2542199913aaba">00909</a>                 vec <a class="code" href="classbdm_1_1elognorm.html#a8b948e2bce1253765a2542199913aaba" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> exp (<a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;ldmat&gt;::sample</a>());};
661<a name="l00910"></a><a class="code" href="classbdm_1_1elognorm.html#aadb41e4f4d6600dec6f8c1dbc5ed9eea">00910</a>                 vec <a class="code" href="classbdm_1_1elognorm.html#aadb41e4f4d6600dec6f8c1dbc5ed9eea" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec var = <a class="code" href="classbdm_1_1enorm.html#a729c75ef0fa8abae03d58ad1f81e6773" title="return expected variance (not covariance!)">enorm&lt;ldmat&gt;::variance</a>();<span class="keywordflow">return</span> exp (<a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7" title="mean value">mu</a> - 0.5*var);};
662<a name="l00911"></a>00911
663<a name="l00912"></a>00912 };
664<a name="l00913"></a>00913
665<a name="l00925"></a><a class="code" href="classbdm_1_1mlognorm.html">00925</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlognorm.html" title="Log-Normal random walk.">mlognorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;elognorm&gt;
666<a name="l00926"></a>00926 {
667<a name="l00927"></a>00927         <span class="keyword">protected</span>:
668<a name="l00929"></a><a class="code" href="classbdm_1_1mlognorm.html#aa51128a2e503b8b2ce698244b9e0db1a">00929</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mlognorm.html#aa51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>;
669<a name="l00930"></a>00930
670<a name="l00932"></a><a class="code" href="classbdm_1_1mlognorm.html#a7d0063f77d899ef22e8c5edd642176d2">00932</a>                 vec &amp;<a class="code" href="classbdm_1_1mlognorm.html#a7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>;
671<a name="l00933"></a>00933         <span class="keyword">public</span>:
672<a name="l00935"></a><a class="code" href="classbdm_1_1mlognorm.html#aa5d6eb2688d02e0348b96c4fbd7bde41">00935</a>                 <a class="code" href="classbdm_1_1mlognorm.html#aa5d6eb2688d02e0348b96c4fbd7bde41" title="Constructor.">mlognorm</a>() : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;<a class="code" href="classbdm_1_1elognorm.html">elognorm</a>&gt;(),
673<a name="l00936"></a>00936                                 <a class="code" href="classbdm_1_1mlognorm.html#aa51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a> (0),
674<a name="l00937"></a>00937                                 <a class="code" href="classbdm_1_1mlognorm.html#a7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>._mu()) {
675<a name="l00938"></a>00938                 }
676<a name="l00939"></a>00939
677<a name="l00941"></a><a class="code" href="classbdm_1_1mlognorm.html#a604cab0e8a76f9041dc3c606043bb39f">00941</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#a604cab0e8a76f9041dc3c606043bb39f" title="Set value of k.">set_parameters</a> (<span class="keywordtype">int</span> size, <span class="keywordtype">double</span> k) {
678<a name="l00942"></a>00942                         <a class="code" href="classbdm_1_1mlognorm.html#aa51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a> = 0.5 * log (k * k + 1);
679<a name="l00943"></a>00943                         <a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.set_parameters (zeros (size), 2*<a class="code" href="classbdm_1_1mlognorm.html#aa51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>*eye (size));
680<a name="l00944"></a>00944
681<a name="l00945"></a>00945                         <a class="code" href="classbdm_1_1mpdf.html#a7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = size;
682<a name="l00946"></a>00946                 };
683<a name="l00947"></a>00947
684<a name="l00948"></a><a class="code" href="classbdm_1_1mlognorm.html#a9106d8fd8bdf2b6be675ffd8f3ca584e">00948</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#a9106d8fd8bdf2b6be675ffd8f3ca584e">condition</a> (<span class="keyword">const</span> vec &amp;val) {
685<a name="l00949"></a>00949                         <a class="code" href="classbdm_1_1mlognorm.html#a7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a> = log (val) - <a class="code" href="classbdm_1_1mlognorm.html#aa51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>;<span class="comment">//elem_mult ( refl,pow ( val,l ) );</span>
686<a name="l00950"></a>00950                 };
687<a name="l00951"></a>00951
688<a name="l00970"></a>00970                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#a49e45ea13a869da607ef9be7a229128a">from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>);
689<a name="l00971"></a>00971
690<a name="l00972"></a>00972                 <span class="comment">// TODO dodelat void to_setting( Setting &amp;set ) const;</span>
691<a name="l00973"></a>00973
692<a name="l00974"></a>00974 };
693<a name="l00975"></a>00975
694<a name="l00976"></a>00976 <a class="code" href="user__info_8h.html#a4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a> (mlognorm);
695<a name="l00977"></a>00977 SHAREDPTR (mlognorm);
696<a name="l00978"></a>00978
697<a name="l00982"></a><a class="code" href="classbdm_1_1eWishartCh.html">00982</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eWishartCh.html">eWishartCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>
698<a name="l00983"></a>00983 {
699<a name="l00984"></a>00984         <span class="keyword">protected</span>:
700<a name="l00986"></a><a class="code" href="classbdm_1_1eWishartCh.html#a1b42f9284a32f23b0b253a628cda7490">00986</a>                 <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> <a class="code" href="classbdm_1_1eWishartCh.html#a1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>;
701<a name="l00988"></a><a class="code" href="classbdm_1_1eWishartCh.html#ab745c73faef785009484180582050a1f">00988</a>                 <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eWishartCh.html#ab745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>;
702<a name="l00990"></a><a class="code" href="classbdm_1_1eWishartCh.html#a1879a14d7d2bb05062523b189baa11c3">00990</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eWishartCh.html#a1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>;
703<a name="l00991"></a>00991         <span class="keyword">public</span>:
704<a name="l00993"></a><a class="code" href="classbdm_1_1eWishartCh.html#a183d961532ee97b7dc5ec81701aa59a0">00993</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#a183d961532ee97b7dc5ec81701aa59a0" title="Set internal structures.">set_parameters</a> (<span class="keyword">const</span> mat &amp;Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0) {<a class="code" href="classbdm_1_1eWishartCh.html#a1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a> = <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> (Y0);<a class="code" href="classbdm_1_1eWishartCh.html#a1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a> = delta0; <a class="code" href="classbdm_1_1eWishartCh.html#ab745c73faef785009484180582050a1f" title="dimension of matrix ">p</a> = <a class="code" href="classbdm_1_1eWishartCh.html#a1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classbdm_1_1sqmat.html#a73e639221343dcce76c3305524d67590" title="Reimplementing common functions of mat: rows().">rows</a>(); <a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eWishartCh.html#ab745c73faef785009484180582050a1f" title="dimension of matrix ">p</a> * <a class="code" href="classbdm_1_1eWishartCh.html#ab745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; }
705<a name="l00995"></a><a class="code" href="classbdm_1_1eWishartCh.html#acc664035d70d2622bf264a29270f8339">00995</a>                 mat <a class="code" href="classbdm_1_1eWishartCh.html#acc664035d70d2622bf264a29270f8339" title="Sample matrix argument.">sample_mat</a>()<span class="keyword"> const </span>{
706<a name="l00996"></a>00996                         mat X = zeros (<a class="code" href="classbdm_1_1eWishartCh.html#ab745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>, <a class="code" href="classbdm_1_1eWishartCh.html#ab745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>);
707<a name="l00997"></a>00997
708<a name="l00998"></a>00998                         <span class="comment">//sample diagonal</span>
709<a name="l00999"></a>00999                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; <a class="code" href="classbdm_1_1eWishartCh.html#ab745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>;i++) {
710<a name="l01000"></a>01000                                 GamRNG.setup (0.5* (<a class="code" href="classbdm_1_1eWishartCh.html#a1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a> - i) , 0.5);   <span class="comment">// no +1 !! index if from 0</span>
711<a name="l01001"></a>01001 <span class="preprocessor">#pragma omp critical</span>
712<a name="l01002"></a>01002 <span class="preprocessor"></span>                                X (i, i) = sqrt (GamRNG());
713<a name="l01003"></a>01003                         }
714<a name="l01004"></a>01004                         <span class="comment">//do the rest</span>
715<a name="l01005"></a>01005                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; p;i++) {
716<a name="l01006"></a>01006                                 <span class="keywordflow">for</span> (<span class="keywordtype">int</span> j = i + 1;j &lt; p;j++) {
717<a name="l01007"></a>01007 <span class="preprocessor">#pragma omp critical</span>
718<a name="l01008"></a>01008 <span class="preprocessor"></span>                                        X (i, j) = NorRNG.sample();
719<a name="l01009"></a>01009                                 }
720<a name="l01010"></a>01010                         }
721<a name="l01011"></a>01011                         <span class="keywordflow">return</span> X*<a class="code" href="classbdm_1_1eWishartCh.html#a1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classbdm_1_1chmat.html#a17daa8c5c5914bd3194cb3053c5793a5" title="Access function.">_Ch</a>();<span class="comment">// return upper triangular part of the decomposition</span>
722<a name="l01012"></a>01012                 }
723<a name="l01013"></a><a class="code" href="classbdm_1_1eWishartCh.html#a8f2154b8b5be8f4c5788f261b6d57b9a">01013</a>                 vec <a class="code" href="classbdm_1_1eWishartCh.html#a8f2154b8b5be8f4c5788f261b6d57b9a" title="Returns a sample,  from density .">sample</a> ()<span class="keyword"> const </span>{
724<a name="l01014"></a>01014                         <span class="keywordflow">return</span> vec (<a class="code" href="classbdm_1_1eWishartCh.html#acc664035d70d2622bf264a29270f8339" title="Sample matrix argument.">sample_mat</a>()._data(), <a class="code" href="classbdm_1_1eWishartCh.html#ab745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>*<a class="code" href="classbdm_1_1eWishartCh.html#ab745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>);
725<a name="l01015"></a>01015                 }
726<a name="l01017"></a><a class="code" href="classbdm_1_1eWishartCh.html#a4eee757c0535c2a88bb20f0767c64981">01017</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#a4eee757c0535c2a88bb20f0767c64981" title="fast access function y0 will be copied into Y.Ch.">setY</a> (<span class="keyword">const</span> mat &amp;Ch0) {copy_vector (<a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, Ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#a1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classbdm_1_1chmat.html#a17daa8c5c5914bd3194cb3053c5793a5" title="Access function.">_Ch</a>()._data());}
727<a name="l01019"></a><a class="code" href="classbdm_1_1eWishartCh.html#a7eac414ec10b85aa5536b0092c57bc4a">01019</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#a7eac414ec10b85aa5536b0092c57bc4a" title="fast access function y0 will be copied into Y.Ch.">_setY</a> (<span class="keyword">const</span> vec &amp;ch0) {copy_vector (<a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#a1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classbdm_1_1chmat.html#a17daa8c5c5914bd3194cb3053c5793a5" title="Access function.">_Ch</a>()._data()); }
728<a name="l01021"></a><a class="code" href="classbdm_1_1eWishartCh.html#a1708cacb5d8cb1b96395d35f5327cb7e">01021</a>                 <span class="keyword">const</span> <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>&amp; <a class="code" href="classbdm_1_1eWishartCh.html#a1708cacb5d8cb1b96395d35f5327cb7e" title="access function">getY</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eWishartCh.html#a1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>;}
729<a name="l01022"></a>01022 };
730<a name="l01023"></a>01023
731<a name="l01025"></a>01025
732<a name="l01027"></a><a class="code" href="classbdm_1_1eiWishartCh.html">01027</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eiWishartCh.html" title="Inverse Wishart on Choleski decomposition.">eiWishartCh</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>
733<a name="l01028"></a>01028 {
734<a name="l01029"></a>01029         <span class="keyword">protected</span>:
735<a name="l01031"></a><a class="code" href="classbdm_1_1eiWishartCh.html#ac6b684b52dc62b8d46e67d5992f98b9a">01031</a>                 <a class="code" href="classbdm_1_1eWishartCh.html">eWishartCh</a> <a class="code" href="classbdm_1_1eiWishartCh.html#ac6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>;
736<a name="l01033"></a><a class="code" href="classbdm_1_1eiWishartCh.html#ac11f1c41183f743b97fbb73a4e9ba6cd">01033</a>                 <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eiWishartCh.html#ac11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>;
737<a name="l01035"></a><a class="code" href="classbdm_1_1eiWishartCh.html#aca3035f7bd5e4597cc1843cf07af8464">01035</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eiWishartCh.html#aca3035f7bd5e4597cc1843cf07af8464" title="parameter delta">delta</a>;
738<a name="l01036"></a>01036         <span class="keyword">public</span>:
739<a name="l01038"></a><a class="code" href="classbdm_1_1eiWishartCh.html#af463caed9d22d9949f3ee67614e7dcd3">01038</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eiWishartCh.html#af463caed9d22d9949f3ee67614e7dcd3" title="constructor function">set_parameters</a> (<span class="keyword">const</span> mat &amp;Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0) {
740<a name="l01039"></a>01039                         <a class="code" href="classbdm_1_1eiWishartCh.html#aca3035f7bd5e4597cc1843cf07af8464" title="parameter delta">delta</a> = delta0;
741<a name="l01040"></a>01040                         <a class="code" href="classbdm_1_1eiWishartCh.html#ac6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>.<a class="code" href="classbdm_1_1eWishartCh.html#a183d961532ee97b7dc5ec81701aa59a0" title="Set internal structures.">set_parameters</a> (inv (Y0), delta0);
742<a name="l01041"></a>01041                         <a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eiWishartCh.html#ac6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>.<a class="code" href="classbdm_1_1epdf.html#a7083a65f7b7a0d0d13b2c516bd2ec29c" title="Size of the random variable.">dimension</a>(); <a class="code" href="classbdm_1_1eiWishartCh.html#ac11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a> = Y0.rows();
743<a name="l01042"></a>01042                 }
744<a name="l01043"></a><a class="code" href="classbdm_1_1eiWishartCh.html#a2f668192cc9c2e3a5b7e608164685a3e">01043</a>                 vec <a class="code" href="classbdm_1_1eiWishartCh.html#a2f668192cc9c2e3a5b7e608164685a3e" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const </span>{mat iCh; iCh = inv (<a class="code" href="classbdm_1_1eiWishartCh.html#ac6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>.<a class="code" href="classbdm_1_1eWishartCh.html#acc664035d70d2622bf264a29270f8339" title="Sample matrix argument.">sample_mat</a>()); <span class="keywordflow">return</span> vec (iCh._data(), <a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>);}
745<a name="l01045"></a><a class="code" href="classbdm_1_1eiWishartCh.html#ad9947933dfc94546cbd6a81f95ec5af5">01045</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eiWishartCh.html#ad9947933dfc94546cbd6a81f95ec5af5" title="access function">_setY</a> (<span class="keyword">const</span> vec &amp;y0) {
746<a name="l01046"></a>01046                         mat Ch (<a class="code" href="classbdm_1_1eiWishartCh.html#ac11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>, <a class="code" href="classbdm_1_1eiWishartCh.html#ac11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>);
747<a name="l01047"></a>01047                         mat iCh (<a class="code" href="classbdm_1_1eiWishartCh.html#ac11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>, <a class="code" href="classbdm_1_1eiWishartCh.html#ac11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>);
748<a name="l01048"></a>01048                         copy_vector (<a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, y0._data(), Ch._data());
749<a name="l01049"></a>01049
750<a name="l01050"></a>01050                         iCh = inv (Ch);
751<a name="l01051"></a>01051                         <a class="code" href="classbdm_1_1eiWishartCh.html#ac6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>.<a class="code" href="classbdm_1_1eWishartCh.html#a4eee757c0535c2a88bb20f0767c64981" title="fast access function y0 will be copied into Y.Ch.">setY</a> (iCh);
752<a name="l01052"></a>01052                 }
753<a name="l01053"></a><a class="code" href="classbdm_1_1eiWishartCh.html#aa6ddbd815b8b666dd542e97f009f89bb">01053</a>                 <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eiWishartCh.html#aa6ddbd815b8b666dd542e97f009f89bb">evallog</a> (<span class="keyword">const</span> vec &amp;val)<span class="keyword"> const </span>{
754<a name="l01054"></a>01054                         <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> X (<a class="code" href="classbdm_1_1eiWishartCh.html#ac11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>);
755<a name="l01055"></a>01055                         <span class="keyword">const</span> <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>&amp; Y = <a class="code" href="classbdm_1_1eiWishartCh.html#ac6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>.<a class="code" href="classbdm_1_1eWishartCh.html#a1708cacb5d8cb1b96395d35f5327cb7e" title="access function">getY</a>();
756<a name="l01056"></a>01056
757<a name="l01057"></a>01057                         copy_vector (<a class="code" href="classbdm_1_1eiWishartCh.html#ac11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>*<a class="code" href="classbdm_1_1eiWishartCh.html#ac11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>, val._data(), X.<a class="code" href="classbdm_1_1chmat.html#a17daa8c5c5914bd3194cb3053c5793a5" title="Access function.">_Ch</a>()._data());
758<a name="l01058"></a>01058                         <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> iX (p);X.<a class="code" href="classbdm_1_1chmat.html#acbf3389db96dff41fb2e9532d59b13c0" title="Inversion in the same form, i.e. cholesky.">inv</a> (iX);
759<a name="l01059"></a>01059                         <span class="comment">// compute</span>
760<a name="l01060"></a>01060 <span class="comment">//                              \frac{ |\Psi|^{m/2}|X|^{-(m+p+1)/2}e^{-tr(\Psi X^{-1})/2} }{ 2^{mp/2}\Gamma_p(m/2)},</span>
761<a name="l01061"></a>01061                         mat M = Y.<a class="code" href="classbdm_1_1chmat.html#a4b4c5d4dbb8a3d585b68d936cb6df31b" title="Conversion to full matrix.">to_mat</a>() * iX.to_mat();
762<a name="l01062"></a>01062
763<a name="l01063"></a>01063                         <span class="keywordtype">double</span> log1 = 0.5 * p * (2 * Y.<a class="code" href="classbdm_1_1chmat.html#a949ccd174ed19f9cfe36366cbd5c56a4" title="Logarithm of a determinant.">logdet</a>()) - 0.5 * (<a class="code" href="classbdm_1_1eiWishartCh.html#aca3035f7bd5e4597cc1843cf07af8464" title="parameter delta">delta</a> + p + 1) * (2 * X.<a class="code" href="classbdm_1_1chmat.html#a949ccd174ed19f9cfe36366cbd5c56a4" title="Logarithm of a determinant.">logdet</a>()) - 0.5 * trace (M);
764<a name="l01064"></a>01064                         <span class="comment">//Fixme! Multivariate gamma omitted!! it is ok for sampling, but not otherwise!!</span>
765<a name="l01065"></a>01065
766<a name="l01066"></a>01066                         <span class="comment">/*                              if (0) {</span>
767<a name="l01067"></a>01067 <span class="comment">                                                                mat XX=X.to_mat();</span>
768<a name="l01068"></a>01068 <span class="comment">                                                                mat YY=Y.to_mat();</span>
769<a name="l01069"></a>01069 <span class="comment"></span>
770<a name="l01070"></a>01070 <span class="comment">                                                                double log2 = 0.5*p*log(det(YY))-0.5*(delta+p+1)*log(det(XX))-0.5*trace(YY*inv(XX));</span>
771<a name="l01071"></a>01071 <span class="comment">                                                                cout &lt;&lt; log1 &lt;&lt; &quot;,&quot; &lt;&lt; log2 &lt;&lt; endl;</span>
772<a name="l01072"></a>01072 <span class="comment">                                                        }*/</span>
773<a name="l01073"></a>01073                         <span class="keywordflow">return</span> log1;
774<a name="l01074"></a>01074                 };
775<a name="l01075"></a>01075
776<a name="l01076"></a>01076 };
777<a name="l01077"></a>01077
778<a name="l01079"></a><a class="code" href="classbdm_1_1rwiWishartCh.html">01079</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1rwiWishartCh.html" title="Random Walk on inverse Wishart.">rwiWishartCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;eiWishartCh&gt;
779<a name="l01080"></a>01080 {
780<a name="l01081"></a>01081         <span class="keyword">protected</span>:
781<a name="l01083"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#a2004675b37f712abe3913057bae97cfb">01083</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1rwiWishartCh.html#a2004675b37f712abe3913057bae97cfb" title="square root of  - needed for computation of  from conditions">sqd</a>;
782<a name="l01085"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#a239b26c71ebcc118ba6925dfb6efc50a">01085</a>                 vec <a class="code" href="classbdm_1_1rwiWishartCh.html#a239b26c71ebcc118ba6925dfb6efc50a" title="reference point for diagonal">refl</a>;
783<a name="l01087"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#a758cd05efa67c60b4bf4f7554b9ba861">01087</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1rwiWishartCh.html#a758cd05efa67c60b4bf4f7554b9ba861" title="power of the reference">l</a>;
784<a name="l01089"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#a7ba06d431995c347d2fce30a59c20663">01089</a>                 <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1rwiWishartCh.html#a7ba06d431995c347d2fce30a59c20663" title="dimension">p</a>;
785<a name="l01090"></a>01090
786<a name="l01091"></a>01091         <span class="keyword">public</span>:
787<a name="l01092"></a>01092                 <a class="code" href="classbdm_1_1rwiWishartCh.html" title="Random Walk on inverse Wishart.">rwiWishartCh</a>() : <a class="code" href="classbdm_1_1rwiWishartCh.html#a2004675b37f712abe3913057bae97cfb" title="square root of  - needed for computation of  from conditions">sqd</a> (0), <a class="code" href="classbdm_1_1rwiWishartCh.html#a758cd05efa67c60b4bf4f7554b9ba861" title="power of the reference">l</a> (0), <a class="code" href="classbdm_1_1rwiWishartCh.html#a7ba06d431995c347d2fce30a59c20663" title="dimension">p</a> (0) {}
788<a name="l01094"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#a28549ee3ce1ff8509360171ea3cf717c">01094</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1rwiWishartCh.html#a28549ee3ce1ff8509360171ea3cf717c" title="constructor function">set_parameters</a> (<span class="keywordtype">int</span> p0, <span class="keywordtype">double</span> k, vec ref0, <span class="keywordtype">double</span> l0) {
789<a name="l01095"></a>01095                         <a class="code" href="classbdm_1_1rwiWishartCh.html#a7ba06d431995c347d2fce30a59c20663" title="dimension">p</a> = p0;
790<a name="l01096"></a>01096                         <span class="keywordtype">double</span> delta = 2 / (k * k) + <a class="code" href="classbdm_1_1rwiWishartCh.html#a7ba06d431995c347d2fce30a59c20663" title="dimension">p</a> + 3;
791<a name="l01097"></a>01097                         <a class="code" href="classbdm_1_1rwiWishartCh.html#a2004675b37f712abe3913057bae97cfb" title="square root of  - needed for computation of  from conditions">sqd</a> = sqrt (delta - <a class="code" href="classbdm_1_1rwiWishartCh.html#a7ba06d431995c347d2fce30a59c20663" title="dimension">p</a> - 1);
792<a name="l01098"></a>01098                         <a class="code" href="classbdm_1_1rwiWishartCh.html#a758cd05efa67c60b4bf4f7554b9ba861" title="power of the reference">l</a> = l0;
793<a name="l01099"></a>01099                         <a class="code" href="classbdm_1_1rwiWishartCh.html#a239b26c71ebcc118ba6925dfb6efc50a" title="reference point for diagonal">refl</a> = pow (ref0, 1 - <a class="code" href="classbdm_1_1rwiWishartCh.html#a758cd05efa67c60b4bf4f7554b9ba861" title="power of the reference">l</a>);
794<a name="l01100"></a>01100
795<a name="l01101"></a>01101                         <a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1eiWishartCh.html#af463caed9d22d9949f3ee67614e7dcd3" title="constructor function">set_parameters</a> (eye (<a class="code" href="classbdm_1_1rwiWishartCh.html#a7ba06d431995c347d2fce30a59c20663" title="dimension">p</a>), delta);
796<a name="l01102"></a>01102                         <a class="code" href="classbdm_1_1mpdf.html#a7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = <a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1epdf.html#a7083a65f7b7a0d0d13b2c516bd2ec29c" title="Size of the random variable.">dimension</a>();
797<a name="l01103"></a>01103                 }
798<a name="l01104"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#aac087ba6c885d3faeda9171229f9b4e6">01104</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1rwiWishartCh.html#aac087ba6c885d3faeda9171229f9b4e6">condition</a> (<span class="keyword">const</span> vec &amp;c) {
799<a name="l01105"></a>01105                         vec z = c;
800<a name="l01106"></a>01106                         <span class="keywordtype">int</span> ri = 0;
801<a name="l01107"></a>01107                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; <a class="code" href="classbdm_1_1rwiWishartCh.html#a7ba06d431995c347d2fce30a59c20663" title="dimension">p</a>*<a class="code" href="classbdm_1_1rwiWishartCh.html#a7ba06d431995c347d2fce30a59c20663" title="dimension">p</a>;i += (p + 1)) {<span class="comment">//trace diagonal element</span>
802<a name="l01108"></a>01108                                 z (i) = pow (z (i), <a class="code" href="classbdm_1_1rwiWishartCh.html#a758cd05efa67c60b4bf4f7554b9ba861" title="power of the reference">l</a>) * <a class="code" href="classbdm_1_1rwiWishartCh.html#a239b26c71ebcc118ba6925dfb6efc50a" title="reference point for diagonal">refl</a> (ri);
803<a name="l01109"></a>01109                                 ri++;
804<a name="l01110"></a>01110                         }
805<a name="l01111"></a>01111
806<a name="l01112"></a>01112                         <a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1eiWishartCh.html#ad9947933dfc94546cbd6a81f95ec5af5" title="access function">_setY</a> (<a class="code" href="classbdm_1_1rwiWishartCh.html#a2004675b37f712abe3913057bae97cfb" title="square root of  - needed for computation of  from conditions">sqd</a>*z);
807<a name="l01113"></a>01113                 }
808<a name="l01114"></a>01114 };
809<a name="l01115"></a>01115
810<a name="l01117"></a>01117 <span class="keyword">enum</span> RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 };
811<a name="l01123"></a><a class="code" href="classbdm_1_1eEmp.html">01123</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>
812<a name="l01124"></a>01124 {
813<a name="l01125"></a>01125         <span class="keyword">protected</span> :
814<a name="l01127"></a><a class="code" href="classbdm_1_1eEmp.html#a9798006271ca77629855113f1283a031">01127</a>                 <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#a9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;
815<a name="l01129"></a><a class="code" href="classbdm_1_1eEmp.html#a9d39241aab7c4bbeb07c6d516421c67d">01129</a>                 vec <a class="code" href="classbdm_1_1eEmp.html#a9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;
816<a name="l01131"></a><a class="code" href="classbdm_1_1eEmp.html#a73d819553a0f268b055a087d2d4486f3">01131</a>                 Array&lt;vec&gt; <a class="code" href="classbdm_1_1eEmp.html#a73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;
817<a name="l01132"></a>01132         <span class="keyword">public</span>:
818<a name="l01135"></a>01135                 <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> () : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> (), <a class="code" href="classbdm_1_1eEmp.html#a9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> (), <a class="code" href="classbdm_1_1eEmp.html#a73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> () {};
819<a name="l01137"></a><a class="code" href="classbdm_1_1eEmp.html#aa3daf6363455af099921715e1233c076">01137</a>                 <a class="code" href="classbdm_1_1eEmp.html#aa3daf6363455af099921715e1233c076" title="copy constructor">eEmp</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> &amp;e) : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> (e), <a class="code" href="classbdm_1_1eEmp.html#a9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> (e.<a class="code" href="classbdm_1_1eEmp.html#a9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>), <a class="code" href="classbdm_1_1eEmp.html#a73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (e.<a class="code" href="classbdm_1_1eEmp.html#a73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>) {};
820<a name="l01139"></a>01139
821<a name="l01141"></a>01141                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#ae7f8f98310c1de51bd5c8a1c87528f72" title="Set samples and weights.">set_statistics</a> (<span class="keyword">const</span> vec &amp;w0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> &amp;pdf0);
822<a name="l01143"></a><a class="code" href="classbdm_1_1eEmp.html#a4f7e6ba7183972e3c7ae399613861b95">01143</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#a4f7e6ba7183972e3c7ae399613861b95" title="Set samples and weights.">set_statistics</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> &amp;pdf0 , <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#a9798006271ca77629855113f1283a031" title="Number of particles.">n</a>) {<a class="code" href="classbdm_1_1eEmp.html#a4f7e6ba7183972e3c7ae399613861b95" title="Set samples and weights.">set_statistics</a> (ones (n) / n, pdf0);};
823<a name="l01145"></a>01145                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#ab62d802b8ef39f7c4dcbeb366c90951a" title="Set sample.">set_samples</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0);
824<a name="l01147"></a><a class="code" href="classbdm_1_1eEmp.html#ac74c281d652356c19b6b079e42ca7ef1">01147</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#ac74c281d652356c19b6b079e42ca7ef1" title="Set sample.">set_parameters</a> (<span class="keywordtype">int</span> n0, <span class="keywordtype">bool</span> copy = <span class="keyword">true</span>) {<a class="code" href="classbdm_1_1eEmp.html#a9798006271ca77629855113f1283a031" title="Number of particles.">n</a> = n0; <a class="code" href="classbdm_1_1eEmp.html#a9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>.set_size (n0, copy);<a class="code" href="classbdm_1_1eEmp.html#a73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>.set_size (n0, copy);};
825<a name="l01149"></a><a class="code" href="classbdm_1_1eEmp.html#a37937007a3a676cf653a7de412674481">01149</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#a37937007a3a676cf653a7de412674481" title="Set samples.">set_parameters</a> (<span class="keyword">const</span> Array&lt;vec&gt; &amp;Av) {
826<a name="l01150"></a>01150                         <a class="code" href="bdmerror_8h.html#a89a0f906b242b79c5d3d342291b2cab4" title="Throw std::runtime_exception if t is not true and NDEBUG is not defined.">bdm_assert_debug</a>(Av.size()&gt;0,<span class="stringliteral">&quot;Empty samples&quot;</span>);
827<a name="l01151"></a>01151                         <a class="code" href="classbdm_1_1eEmp.html#a9798006271ca77629855113f1283a031" title="Number of particles.">n</a> = Av.size();
828<a name="l01152"></a>01152                         <a class="code" href="classbdm_1_1eEmp.html#ac74c281d652356c19b6b079e42ca7ef1" title="Set sample.">epdf::set_parameters</a>(Av(0).length());
829<a name="l01153"></a>01153                         <a class="code" href="classbdm_1_1eEmp.html#a9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>=1/n*ones(n);
830<a name="l01154"></a>01154                         <a class="code" href="classbdm_1_1eEmp.html#a73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>=Av;
831<a name="l01155"></a>01155                 };
832<a name="l01157"></a><a class="code" href="classbdm_1_1eEmp.html#ad7f83cc0415cd44ae7cc8b4bdad93aef">01157</a>                 vec&amp; <a class="code" href="classbdm_1_1eEmp.html#ad7f83cc0415cd44ae7cc8b4bdad93aef" title="Potentially dangerous, use with care.">_w</a>()  {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#a9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;};
833<a name="l01159"></a><a class="code" href="classbdm_1_1eEmp.html#ab7d7106f486e3fad38590914a693d714">01159</a>                 <span class="keyword">const</span> vec&amp; <a class="code" href="classbdm_1_1eEmp.html#ab7d7106f486e3fad38590914a693d714" title="Potentially dangerous, use with care.">_w</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#a9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;};
834<a name="l01161"></a><a class="code" href="classbdm_1_1eEmp.html#ac24966b0aaeb767bc8a6b4fd60931be2">01161</a>                 Array&lt;vec&gt;&amp; <a class="code" href="classbdm_1_1eEmp.html#ac24966b0aaeb767bc8a6b4fd60931be2" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#a73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;};
835<a name="l01163"></a><a class="code" href="classbdm_1_1eEmp.html#ab59af0efdb009d98ea8ebfa965e74ae2">01163</a>                 <span class="keyword">const</span> Array&lt;vec&gt;&amp; <a class="code" href="classbdm_1_1eEmp.html#ab59af0efdb009d98ea8ebfa965e74ae2" title="access function">_samples</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#a73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;};
836<a name="l01165"></a>01165                 ivec <a class="code" href="classbdm_1_1eEmp.html#af06ce255de5dbb2313f52ee51f82ba3d" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> (RESAMPLING_METHOD method = SYSTEMATIC);
837<a name="l01166"></a>01166
838<a name="l01168"></a><a class="code" href="classbdm_1_1eEmp.html#a97f1e07b5ae6eebc91c7365f0f88d270">01168</a>                 vec <a class="code" href="classbdm_1_1eEmp.html#a97f1e07b5ae6eebc91c7365f0f88d270" title="inherited operation : NOT implemented">sample</a>()<span class="keyword"> const </span>{
839<a name="l01169"></a>01169                         <a class="code" href="bdmerror_8h.html#a7c43f3a72afe68ab0c85663a1bb3521a" title="Unconditionally throw std::runtime_error.">bdm_error</a> (<span class="stringliteral">&quot;Not implemented&quot;</span>);
840<a name="l01170"></a>01170                         <span class="keywordflow">return</span> vec();
841<a name="l01171"></a>01171                 }
842<a name="l01172"></a>01172
843<a name="l01174"></a><a class="code" href="classbdm_1_1eEmp.html#a01654c014d3aa068f8d4ecba4be86d09">01174</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEmp.html#a01654c014d3aa068f8d4ecba4be86d09" title="inherited operation : NOT implemented">evallog</a> (<span class="keyword">const</span> vec &amp;val)<span class="keyword"> const </span>{
844<a name="l01175"></a>01175                         <a class="code" href="bdmerror_8h.html#a7c43f3a72afe68ab0c85663a1bb3521a" title="Unconditionally throw std::runtime_error.">bdm_error</a> (<span class="stringliteral">&quot;Not implemented&quot;</span>);
845<a name="l01176"></a>01176                         <span class="keywordflow">return</span> 0.0;
846<a name="l01177"></a>01177                 }
847<a name="l01178"></a>01178
848<a name="l01179"></a><a class="code" href="classbdm_1_1eEmp.html#abbfcb4f868c7381298c281a256d8c4b9">01179</a>                 vec <a class="code" href="classbdm_1_1eEmp.html#abbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>()<span class="keyword"> const </span>{
849<a name="l01180"></a>01180                         vec pom = zeros (<a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>);
850<a name="l01181"></a>01181                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; <a class="code" href="classbdm_1_1eEmp.html#a9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++) {pom += <a class="code" href="classbdm_1_1eEmp.html#a73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i) * <a class="code" href="classbdm_1_1eEmp.html#a9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> (i);}
851<a name="l01182"></a>01182                         <span class="keywordflow">return</span> pom;
852<a name="l01183"></a>01183                 }
853<a name="l01184"></a><a class="code" href="classbdm_1_1eEmp.html#a05e9ebf467ede737cb6a3621d7fd3c87">01184</a>                 vec <a class="code" href="classbdm_1_1eEmp.html#a05e9ebf467ede737cb6a3621d7fd3c87" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{
854<a name="l01185"></a>01185                         vec pom = zeros (<a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>);
855<a name="l01186"></a>01186                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; <a class="code" href="classbdm_1_1eEmp.html#a9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++) {pom += pow (<a class="code" href="classbdm_1_1eEmp.html#a73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i), 2) * <a class="code" href="classbdm_1_1eEmp.html#a9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> (i);}
856<a name="l01187"></a>01187                         <span class="keywordflow">return</span> pom -pow (<a class="code" href="classbdm_1_1eEmp.html#abbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>(), 2);
857<a name="l01188"></a>01188                 }
858<a name="l01190"></a><a class="code" href="classbdm_1_1eEmp.html#ab1c9df656144edf79ba2d885613f661f">01190</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#ab1c9df656144edf79ba2d885613f661f" title="For this class, qbounds are minimum and maximum value of the population!">qbounds</a> (vec &amp;lb, vec &amp;ub, <span class="keywordtype">double</span> perc = 0.95)<span class="keyword"> const </span>{
859<a name="l01191"></a>01191                         <span class="comment">// lb in inf so than it will be pushed below;</span>
860<a name="l01192"></a>01192                         lb.set_size (<a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>);
861<a name="l01193"></a>01193                         ub.set_size (<a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>);
862<a name="l01194"></a>01194                         lb = std::numeric_limits&lt;double&gt;::infinity();
863<a name="l01195"></a>01195                         ub = -std::numeric_limits&lt;double&gt;::infinity();
864<a name="l01196"></a>01196                         <span class="keywordtype">int</span> j;
865<a name="l01197"></a>01197                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; <a class="code" href="classbdm_1_1eEmp.html#a9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++) {
866<a name="l01198"></a>01198                                 <span class="keywordflow">for</span> (j = 0;j &lt; <a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>; j++) {
867<a name="l01199"></a>01199                                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1eEmp.html#a73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i) (j) &lt; lb (j)) {lb (j) = <a class="code" href="classbdm_1_1eEmp.html#a73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i) (j);}
868<a name="l01200"></a>01200                                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1eEmp.html#a73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i) (j) &gt; ub (j)) {ub (j) = <a class="code" href="classbdm_1_1eEmp.html#a73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i) (j);}
869<a name="l01201"></a>01201                                 }
870<a name="l01202"></a>01202                         }
871<a name="l01203"></a>01203                 }
872<a name="l01204"></a>01204 };
873<a name="l01205"></a>01205
874<a name="l01206"></a>01206
875<a name="l01208"></a>01208
876<a name="l01209"></a>01209 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
877<a name="l01210"></a>01210 <span class="keywordtype">void</span> enorm&lt;sq_T&gt;::set_parameters (<span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> sq_T &amp;R0)
878<a name="l01211"></a>01211 {
879<a name="l01212"></a>01212 <span class="comment">//Fixme test dimensions of mu0 and R0;</span>
880<a name="l01213"></a>01213         mu = mu0;
881<a name="l01214"></a>01214         R = R0;
882<a name="l01215"></a>01215         <a class="code" href="classbdm_1_1root.html#a1c314bd6d6dacb8ba78ea5eb88fd9516" title="This method TODO.">validate</a>();
883<a name="l01216"></a>01216 };
884<a name="l01217"></a>01217
885<a name="l01218"></a>01218 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
886<a name="l01219"></a><a class="code" href="classbdm_1_1enorm.html#a61bd470764020bea6e1ed35000f259e6">01219</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#a61bd470764020bea6e1ed35000f259e6">enorm&lt;sq_T&gt;::from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>)
887<a name="l01220"></a>01220 {
888<a name="l01221"></a>01221         <a class="code" href="classbdm_1_1enorm.html#a61bd470764020bea6e1ed35000f259e6">epdf::from_setting</a> (<span class="keyword">set</span>); <span class="comment">//reads rv</span>
889<a name="l01222"></a>01222
890<a name="l01223"></a>01223         <a class="code" href="classbdm_1_1UI.html#acd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7" title="mean value">mu</a>, <span class="keyword">set</span>, <span class="stringliteral">&quot;mu&quot;</span>, UI::compulsory);
891<a name="l01224"></a>01224         mat Rtmp;<span class="comment">// necessary for conversion</span>
892<a name="l01225"></a>01225         <a class="code" href="classbdm_1_1UI.html#acd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (Rtmp, <span class="keyword">set</span>, <span class="stringliteral">&quot;R&quot;</span>, UI::compulsory);
893<a name="l01226"></a>01226         <a class="code" href="classbdm_1_1enorm.html#a2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> = Rtmp; <span class="comment">// conversion</span>
894<a name="l01227"></a>01227         <a class="code" href="classbdm_1_1enorm.html#a38eb17ecb75d94a50b6782fcf735cfea" title="This method TODO.">validate</a>();
895<a name="l01228"></a>01228 }
896<a name="l01229"></a>01229
897<a name="l01230"></a>01230 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
898<a name="l01231"></a><a class="code" href="classbdm_1_1enorm.html#ad2e0d3a1e30ab3ab04df2d0c43ae74a2">01231</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#ad2e0d3a1e30ab3ab04df2d0c43ae74a2" title="dupdate in exponential form (not really handy)">enorm&lt;sq_T&gt;::dupdate</a> (mat &amp;v, <span class="keywordtype">double</span> nu)
899<a name="l01232"></a>01232 {
900<a name="l01233"></a>01233         <span class="comment">//</span>
901<a name="l01234"></a>01234 };
902<a name="l01235"></a>01235
903<a name="l01236"></a>01236 <span class="comment">// template&lt;class sq_T&gt;</span>
904<a name="l01237"></a>01237 <span class="comment">// void enorm&lt;sq_T&gt;::tupdate ( double phi, mat &amp;vbar, double nubar ) {</span>
905<a name="l01238"></a>01238 <span class="comment">//      //</span>
906<a name="l01239"></a>01239 <span class="comment">// };</span>
907<a name="l01240"></a>01240
908<a name="l01241"></a>01241 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
909<a name="l01242"></a><a class="code" href="classbdm_1_1enorm.html#ae1a48f52351ec3a349bd443b713b1766">01242</a> vec <a class="code" href="classbdm_1_1enorm.html#ae1a48f52351ec3a349bd443b713b1766" title="Returns a sample,  from density .">enorm&lt;sq_T&gt;::sample</a>()<span class="keyword"> const</span>
910<a name="l01243"></a>01243 <span class="keyword"></span>{
911<a name="l01244"></a>01244         vec x (<a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>);
912<a name="l01245"></a>01245 <span class="preprocessor">#pragma omp critical</span>
913<a name="l01246"></a>01246 <span class="preprocessor"></span>        NorRNG.sample_vector (<a class="code" href="classbdm_1_1epdf.html#a16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, x);
914<a name="l01247"></a>01247         vec smp = <a class="code" href="classbdm_1_1enorm.html#a2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult (x);
915<a name="l01248"></a>01248
916<a name="l01249"></a>01249         smp += <a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7" title="mean value">mu</a>;
917<a name="l01250"></a>01250         <span class="keywordflow">return</span> smp;
918<a name="l01251"></a>01251 };
919<a name="l01252"></a>01252
920<a name="l01253"></a>01253 <span class="comment">// template&lt;class sq_T&gt;</span>
921<a name="l01254"></a>01254 <span class="comment">// double enorm&lt;sq_T&gt;::eval ( const vec &amp;val ) const {</span>
922<a name="l01255"></a>01255 <span class="comment">//      double pdfl,e;</span>
923<a name="l01256"></a>01256 <span class="comment">//      pdfl = evallog ( val );</span>
924<a name="l01257"></a>01257 <span class="comment">//      e = exp ( pdfl );</span>
925<a name="l01258"></a>01258 <span class="comment">//      return e;</span>
926<a name="l01259"></a>01259 <span class="comment">// };</span>
927<a name="l01260"></a>01260
928<a name="l01261"></a>01261 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
929<a name="l01262"></a><a class="code" href="classbdm_1_1enorm.html#ae13aeed5b543b2179bacdc4fa2ae47a3">01262</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#ae13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">enorm&lt;sq_T&gt;::evallog_nn</a> (<span class="keyword">const</span> vec &amp;val)<span class="keyword"> const</span>
930<a name="l01263"></a>01263 <span class="keyword"></span>{
931<a name="l01264"></a>01264         <span class="comment">// 1.83787706640935 = log(2pi)</span>
932<a name="l01265"></a>01265         <span class="keywordtype">double</span> tmp = -0.5 * (<a class="code" href="classbdm_1_1enorm.html#a2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.invqform (<a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7" title="mean value">mu</a> - val));<span class="comment">// - lognc();</span>
933<a name="l01266"></a>01266         <span class="keywordflow">return</span>  tmp;
934<a name="l01267"></a>01267 };
935<a name="l01268"></a>01268
936<a name="l01269"></a>01269 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
937<a name="l01270"></a><a class="code" href="classbdm_1_1enorm.html#a25785343aff102cc5df1cab08ba16d32">01270</a> <span class="keyword">inline</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#a25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">enorm&lt;sq_T&gt;::lognc</a> ()<span class="keyword"> const</span>
938<a name="l01271"></a>01271 <span class="keyword"></span>{
939<a name="l01272"></a>01272         <span class="comment">// 1.83787706640935 = log(2pi)</span>
940<a name="l01273"></a>01273         <span class="keywordtype">double</span> tmp = 0.5 * (<a class="code" href="classbdm_1_1enorm.html#a2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 + <a class="code" href="classbdm_1_1enorm.html#a2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.logdet());
941<a name="l01274"></a>01274         <span class="keywordflow">return</span> tmp;
942<a name="l01275"></a>01275 };
943<a name="l01276"></a>01276
944<a name="l01277"></a>01277
945<a name="l01278"></a>01278 <span class="comment">// template&lt;class sq_T&gt;</span>
946<a name="l01279"></a>01279 <span class="comment">// vec mlnorm&lt;sq_T&gt;::samplecond (const  vec &amp;cond, double &amp;lik ) {</span>
947<a name="l01280"></a>01280 <span class="comment">//      this-&gt;condition ( cond );</span>
948<a name="l01281"></a>01281 <span class="comment">//      vec smp = epdf.sample();</span>
949<a name="l01282"></a>01282 <span class="comment">//      lik = epdf.eval ( smp );</span>
950<a name="l01283"></a>01283 <span class="comment">//      return smp;</span>
951<a name="l01284"></a>01284 <span class="comment">// }</span>
952<a name="l01285"></a>01285
953<a name="l01286"></a>01286 <span class="comment">// template&lt;class sq_T&gt;</span>
954<a name="l01287"></a>01287 <span class="comment">// mat mlnorm&lt;sq_T&gt;::samplecond (const vec &amp;cond, vec &amp;lik, int n ) {</span>
955<a name="l01288"></a>01288 <span class="comment">//      int i;</span>
956<a name="l01289"></a>01289 <span class="comment">//      int dim = rv.count();</span>
957<a name="l01290"></a>01290 <span class="comment">//      mat Smp ( dim,n );</span>
958<a name="l01291"></a>01291 <span class="comment">//      vec smp ( dim );</span>
959<a name="l01292"></a>01292 <span class="comment">//      this-&gt;condition ( cond );</span>
960<a name="l01293"></a>01293 <span class="comment">//</span>
961<a name="l01294"></a>01294 <span class="comment">//      for ( i=0; i&lt;n; i++ ) {</span>
962<a name="l01295"></a>01295 <span class="comment">//              smp = epdf.sample();</span>
963<a name="l01296"></a>01296 <span class="comment">//              lik ( i ) = epdf.eval ( smp );</span>
964<a name="l01297"></a>01297 <span class="comment">//              Smp.set_col ( i ,smp );</span>
965<a name="l01298"></a>01298 <span class="comment">//      }</span>
966<a name="l01299"></a>01299 <span class="comment">//</span>
967<a name="l01300"></a>01300 <span class="comment">//      return Smp;</span>
968<a name="l01301"></a>01301 <span class="comment">// }</span>
969<a name="l01302"></a>01302
970<a name="l01303"></a>01303
971<a name="l01304"></a>01304 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
972<a name="l01305"></a><a class="code" href="classbdm_1_1enorm.html#adcb739443669ba0a8faf634196284c08">01305</a> <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;epdf&gt;</a> <a class="code" href="classbdm_1_1enorm.html#adcb739443669ba0a8faf634196284c08" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">enorm&lt;sq_T&gt;::marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn )<span class="keyword"> const</span>
973<a name="l01306"></a>01306 <span class="keyword"></span>{
974<a name="l01307"></a>01307         <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a> *tmp = <span class="keyword">new</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a> ();
975<a name="l01308"></a>01308         <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;epdf&gt;</a> narrow(tmp);
976<a name="l01309"></a>01309         <a class="code" href="classbdm_1_1enorm.html#adcb739443669ba0a8faf634196284c08" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">marginal</a> ( rvn, *tmp );
977<a name="l01310"></a>01310         <span class="keywordflow">return</span> narrow;
978<a name="l01311"></a>01311 }
979<a name="l01312"></a>01312
980<a name="l01313"></a>01313 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
981<a name="l01314"></a>01314 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#adcb739443669ba0a8faf634196284c08" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">enorm&lt;sq_T&gt;::marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn, <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a> &amp;target )<span class="keyword"> const</span>
982<a name="l01315"></a>01315 <span class="keyword"></span>{
983<a name="l01316"></a>01316         <a class="code" href="bdmerror_8h.html#a89a0f906b242b79c5d3d342291b2cab4" title="Throw std::runtime_exception if t is not true and NDEBUG is not defined.">bdm_assert_debug</a> (<a class="code" href="classbdm_1_1epdf.html#ac4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(), <span class="stringliteral">&quot;rv description is not assigned&quot;</span>);
984<a name="l01317"></a>01317         ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#acbebdb5e0d30101a6eb63550ef701c55">dataind</a> (<a class="code" href="classbdm_1_1epdf.html#a62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>);
985<a name="l01318"></a>01318
986<a name="l01319"></a>01319         sq_T Rn (<a class="code" href="classbdm_1_1enorm.html#a2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>, irvn);  <span class="comment">// select rows and columns of R</span>
987<a name="l01320"></a>01320
988<a name="l01321"></a>01321         target.<a class="code" href="classbdm_1_1epdf.html#af423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a> ( rvn );
989<a name="l01322"></a>01322         target.set_parameters (<a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7" title="mean value">mu</a> (irvn), Rn);
990<a name="l01323"></a>01323 }
991<a name="l01324"></a>01324
992<a name="l01325"></a>01325 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
993<a name="l01326"></a><a class="code" href="classbdm_1_1enorm.html#a40201ca12c6900f7aeb493bb7c582e20">01326</a> <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;mpdf&gt;</a> <a class="code" href="classbdm_1_1enorm.html#a40201ca12c6900f7aeb493bb7c582e20" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">enorm&lt;sq_T&gt;::condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn )<span class="keyword"> const</span>
994<a name="l01327"></a>01327 <span class="keyword"></span>{
995<a name="l01328"></a>01328         <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm&lt;sq_T&gt;</a> *tmp = <span class="keyword">new</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm&lt;sq_T&gt;</a> ();
996<a name="l01329"></a>01329         <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;mpdf&gt;</a> narrow(tmp);
997<a name="l01330"></a>01330         <a class="code" href="classbdm_1_1enorm.html#a40201ca12c6900f7aeb493bb7c582e20" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">condition</a> ( rvn, *tmp );
998<a name="l01331"></a>01331         <span class="keywordflow">return</span> narrow;
999<a name="l01332"></a>01332 }
1000<a name="l01333"></a>01333
1001<a name="l01334"></a>01334 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
1002<a name="l01335"></a>01335 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#a40201ca12c6900f7aeb493bb7c582e20" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">enorm&lt;sq_T&gt;::condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn, <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling , where  is random variable, rv, and...">mpdf</a> &amp;target )<span class="keyword"> const</span>
1003<a name="l01336"></a>01336 <span class="keyword"></span>{
1004<a name="l01337"></a>01337         <span class="keyword">typedef</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm&lt;sq_T&gt;</a> TMlnorm;
1005<a name="l01338"></a>01338
1006<a name="l01339"></a>01339         <a class="code" href="bdmerror_8h.html#a89a0f906b242b79c5d3d342291b2cab4" title="Throw std::runtime_exception if t is not true and NDEBUG is not defined.">bdm_assert_debug</a> (<a class="code" href="classbdm_1_1epdf.html#ac4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(), <span class="stringliteral">&quot;rvs are not assigned&quot;</span>);
1007<a name="l01340"></a>01340         TMlnorm &amp;uptarget = <span class="keyword">dynamic_cast&lt;</span>TMlnorm &amp;<span class="keyword">&gt;</span>(target);
1008<a name="l01341"></a>01341
1009<a name="l01342"></a>01342         <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> rvc = <a class="code" href="classbdm_1_1epdf.html#a62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#aaec44dabdf0a6d90fbae95e1356eda39" title="Subtract another variable from the current one.">subt</a> (rvn);
1010<a name="l01343"></a>01343         <a class="code" href="bdmerror_8h.html#a89a0f906b242b79c5d3d342291b2cab4" title="Throw std::runtime_exception if t is not true and NDEBUG is not defined.">bdm_assert_debug</a> ( (rvc._dsize() + rvn._dsize() == <a class="code" href="classbdm_1_1epdf.html#a62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>._dsize()), <span class="stringliteral">&quot;wrong rvn&quot;</span>);
1011<a name="l01344"></a>01344         <span class="comment">//Permutation vector of the new R</span>
1012<a name="l01345"></a>01345         ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#acbebdb5e0d30101a6eb63550ef701c55">dataind</a> (<a class="code" href="classbdm_1_1epdf.html#a62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>);
1013<a name="l01346"></a>01346         ivec irvc = rvc.<a class="code" href="classbdm_1_1RV.html#acbebdb5e0d30101a6eb63550ef701c55">dataind</a> (<a class="code" href="classbdm_1_1epdf.html#a62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>);
1014<a name="l01347"></a>01347         ivec perm = concat (irvn , irvc);
1015<a name="l01348"></a>01348         sq_T Rn (<a class="code" href="classbdm_1_1enorm.html#a2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>, perm);
1016<a name="l01349"></a>01349
1017<a name="l01350"></a>01350         <span class="comment">//fixme - could this be done in general for all sq_T?</span>
1018<a name="l01351"></a>01351         mat S = Rn.to_mat();
1019<a name="l01352"></a>01352         <span class="comment">//fixme</span>
1020<a name="l01353"></a>01353         <span class="keywordtype">int</span> n = rvn._dsize() - 1;
1021<a name="l01354"></a>01354         <span class="keywordtype">int</span> end = <a class="code" href="classbdm_1_1enorm.html#a2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows() - 1;
1022<a name="l01355"></a>01355         mat S11 = S.get (0, n, 0, n);
1023<a name="l01356"></a>01356         mat S12 = S.get (0, n , rvn._dsize(), end);
1024<a name="l01357"></a>01357         mat S22 = S.get (rvn._dsize(), end, rvn._dsize(), end);
1025<a name="l01358"></a>01358
1026<a name="l01359"></a>01359         vec mu1 = <a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7" title="mean value">mu</a> (irvn);
1027<a name="l01360"></a>01360         vec mu2 = <a class="code" href="classbdm_1_1enorm.html#ac702a194720853570d08b65482f842c7" title="mean value">mu</a> (irvc);
1028<a name="l01361"></a>01361         mat A = S12 * inv (S22);
1029<a name="l01362"></a>01362         sq_T R_n (S11 - A *S12.T());
1030<a name="l01363"></a>01363
1031<a name="l01364"></a>01364         uptarget.set_rv (rvn);
1032<a name="l01365"></a>01365         uptarget.set_rvc (rvc);
1033<a name="l01366"></a>01366         uptarget.set_parameters (A, mu1 - A*mu2, R_n);
1034<a name="l01367"></a>01367 }
1035<a name="l01368"></a>01368
1036<a name="l01371"></a>01371 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
1037<a name="l01372"></a><a class="code" href="classbdm_1_1mgnorm.html#ab736332d20e418bf50d45836e129f339">01372</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#ab736332d20e418bf50d45836e129f339" title="set mean function">mgnorm&lt;sq_T &gt;::set_parameters</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;fnc&gt;</a> &amp;g0, <span class="keyword">const</span> sq_T &amp;R0) {
1038<a name="l01373"></a>01373         g = g0;
1039<a name="l01374"></a>01374         this-&gt;<a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.set_parameters (zeros (g-&gt;dimension()), R0);
1040<a name="l01375"></a>01375 }
1041<a name="l01376"></a>01376
1042<a name="l01377"></a>01377 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
1043<a name="l01378"></a><a class="code" href="classbdm_1_1mgnorm.html#ab31d63472cf6a1030cd8dbd8094c1f6d">01378</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#ab31d63472cf6a1030cd8dbd8094c1f6d">mgnorm&lt;sq_T &gt;::condition</a> (<span class="keyword">const</span> vec &amp;cond) {this-&gt;<a class="code" href="classbdm_1_1mpdf__internal.html#a47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>._mu() = g-&gt;eval (cond);};
1044<a name="l01379"></a>01379
1045<a name="l01381"></a>01381 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt;
1046<a name="l01382"></a>01382 std::ostream &amp;operator&lt;&lt; (std::ostream &amp;os,  mlnorm&lt;sq_T&gt; &amp;ml)
1047<a name="l01383"></a>01383 {
1048<a name="l01384"></a>01384         os &lt;&lt; <span class="stringliteral">&quot;A:&quot;</span> &lt;&lt; ml.A &lt;&lt; endl;
1049<a name="l01385"></a>01385         os &lt;&lt; <span class="stringliteral">&quot;mu:&quot;</span> &lt;&lt; ml.mu_const &lt;&lt; endl;
1050<a name="l01386"></a>01386         os &lt;&lt; <span class="stringliteral">&quot;R:&quot;</span> &lt;&lt; ml._R() &lt;&lt; endl;
1051<a name="l01387"></a>01387         <span class="keywordflow">return</span> os;
1052<a name="l01388"></a>01388 };
1053<a name="l01389"></a>01389
1054<a name="l01390"></a>01390 }
1055<a name="l01391"></a>01391 <span class="preprocessor">#endif //EF_H</span>
1056</pre></div></div>
1057<hr size="1"/><address style="text-align: right;"><small>Generated on Sun Aug 30 22:10:49 2009 for mixpp by&nbsp;
1058<a href="http://www.doxygen.org/index.html">
1059<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
1060</body>
1061</html>
Note: See TracBrowser for help on using the browser.