| 1 | \form#0:$f(x)$ | 
|---|
| 2 | \form#1:$x$ | 
|---|
| 3 | \form#2:\[ f(\theta_t | d_1,\ldots,d_t) = \frac{f(y_t|\theta_t,\cdot) f(\theta_t|d_1,\ldots,d_{t-1})}{f(y_t|d_1,\ldots,d_{t-1})} \] | 
|---|
| 4 | \form#3:$y_t$ | 
|---|
| 5 | \form#4:$ c_t $ | 
|---|
| 6 | \form#5:\[ f(\theta_t | c_t, d_1,\ldots,d_t) \propto f(y_t,\theta_t|c_t,\cdot, d_1,\ldots,d_{t-1}) \] | 
|---|
| 7 | \form#6:$x=$ | 
|---|
| 8 | \form#7:$ x $ | 
|---|
| 9 | \form#8:$ f_x()$ | 
|---|
| 10 | \form#9:$ [x_1 , x_2 , \ldots \ $ | 
|---|
| 11 | \form#10:$ f_x(rv)$ | 
|---|
| 12 | \form#11:$x \sim epdf(rv|cond)$ | 
|---|
| 13 | \form#12:$ t $ | 
|---|
| 14 | \form#13:$ t+1 $ | 
|---|
| 15 | \form#14:$ f(d_{t+1} |d_{t}, \ldots d_{0}) $ | 
|---|
| 16 | \form#15:$t$ | 
|---|
| 17 | \form#16:$[y_{t} y_{t-1} ...]$ | 
|---|
| 18 | \form#17:$[y_t, u_t, y_{t-1 }, u_{t-1}, \ldots]$ | 
|---|
| 19 | \form#18:$ f(x_t|x_{t-1}) $ | 
|---|
| 20 | \form#19:$ f(d_t|x_t) $ | 
|---|
| 21 | \form#20:\[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \] | 
|---|
| 22 | \form#21:$[\theta r]$ | 
|---|
| 23 | \form#22:$\psi=\psi(y_{1:t},u_{1:t})$ | 
|---|
| 24 | \form#23:$u_t$ | 
|---|
| 25 | \form#24:$e_t$ | 
|---|
| 26 | \form#25:\[ e_t \sim \mathcal{N}(0,1). \] | 
|---|
| 27 | \form#26:$ y_t $ | 
|---|
| 28 | \form#27:$\theta,r$ | 
|---|
| 29 | \form#28:$ dt = [y_t psi_t] $ | 
|---|
| 30 | \form#29:\[ x_t = A x_{t-1} + B u_t + Q^{1/2} e_t \] | 
|---|
| 31 | \form#30:\[ y_t = C x_{t-1} + C u_t + Q^{1/2} w_t. \] | 
|---|
| 32 | \form#31:\[ \left[\begin{array}{cc} R^{0.5}\\ P_{t|t-1}^{0.5}C' & P_{t|t-1}^{0.5}CA'\\ & Q^{0.5}\end{array}\right]<\mathrm{orth.oper.}>=\left[\begin{array}{cc} R_{y}^{0.5} & KA'\\ & P_{t+1|t}^{0.5}\\ \\\end{array}\right]\] | 
|---|
| 33 | \form#32:\[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \] | 
|---|
| 34 | \form#33:$\psi$ | 
|---|
| 35 | \form#34:$w=[w_1,\ldots,w_n]$ | 
|---|
| 36 | \form#35:$\theta_i$ | 
|---|
| 37 | \form#36:$\Theta$ | 
|---|
| 38 | \form#37:$\Theta = [\theta_1,\ldots,\theta_n,w]$ | 
|---|
| 39 | \form#38:$A=Ch' Ch$ | 
|---|
| 40 | \form#39:$Ch$ | 
|---|
| 41 | \form#40:$f(x) = a$ | 
|---|
| 42 | \form#41:$f(x) = Ax+B$ | 
|---|
| 43 | \form#42:$f(x,u)$ | 
|---|
| 44 | \form#43:$f(x,u) = Ax+Bu$ | 
|---|
| 45 | \form#44:$f(x0,u0)$ | 
|---|
| 46 | \form#45:$A=\frac{d}{dx}f(x,u)|_{x0,u0}$ | 
|---|
| 47 | \form#46:$u$ | 
|---|
| 48 | \form#47:$A=\frac{d}{du}f(x,u)|_{x0,u0}$ | 
|---|
| 49 | \form#48:\[M = L'DL\] | 
|---|
| 50 | \form#49:$L$ | 
|---|
| 51 | \form#50:$D$ | 
|---|
| 52 | \form#51:$V = V + w v v'$ | 
|---|
| 53 | \form#52:$C$ | 
|---|
| 54 | \form#53:$V = C*V*C'$ | 
|---|
| 55 | \form#54:$V = C'*V*C$ | 
|---|
| 56 | \form#55:$V$ | 
|---|
| 57 | \form#56:$x= v'*V*v$ | 
|---|
| 58 | \form#57:$x= v'*inv(V)*v$ | 
|---|
| 59 | \form#58:$U$ | 
|---|
| 60 | \form#59:$A'D0 A$ | 
|---|
| 61 | \form#60:$L'DL$ | 
|---|
| 62 | \form#61:$A'*diag(D)*A = self.L'*diag(self.D)*self.L$ | 
|---|
| 63 | \form#62:\[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \] | 
|---|
| 64 | \form#63:$ f(rvc) = \int f(rv,rvc) d\ rv $ | 
|---|
| 65 | \form#64:\[ f(x) = \sum_{i=1}^{n} w_{i} f_i(x), \quad \sum_{i=1}^n w_i = 1. \] | 
|---|
| 66 | \form#65:$f_i(x)$ | 
|---|
| 67 | \form#66:$p$ | 
|---|
| 68 | \form#67:$p\times$ | 
|---|
| 69 | \form#68:$n$ | 
|---|
| 70 | \form#69:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^{\beta_i-1} \] | 
|---|
| 71 | \form#70:$\gamma=\sum_i \beta_i$ | 
|---|
| 72 | \form#71:\[ f(x|\alpha,\beta) = \prod f(x_i|\alpha_i,\beta_i) \] | 
|---|
| 73 | \form#72:$\beta$ | 
|---|
| 74 | \form#73:\[ x\sim iG(a,b) => 1/x\sim G(a,1/b) \] | 
|---|
| 75 | \form#74:$mu=A*rvc+mu_0$ | 
|---|
| 76 | \form#75:$\mu$ | 
|---|
| 77 | \form#76:$k$ | 
|---|
| 78 | \form#77:$\alpha=k$ | 
|---|
| 79 | \form#78:$\beta=k/\mu$ | 
|---|
| 80 | \form#79:$\mu/\sqrt(k)$ | 
|---|
| 81 | \form#80:$ \mu $ | 
|---|
| 82 | \form#81:$ k $ | 
|---|
| 83 | \form#82:$ \alpha=\mu/k^2+2 $ | 
|---|
| 84 | \form#83:$ \beta=\mu(\alpha-1)$ | 
|---|
| 85 | \form#84:$ \mu/\sqrt(k)$ | 
|---|
| 86 | \form#85:$l$ | 
|---|
| 87 | \form#86:\[ \mu = \mu_{t-1} ^{l} p^{1-l}\] | 
|---|
| 88 | \form#87:$ \log(x)\sim \mathcal{N}(\mu,\sigma^2) $ | 
|---|
| 89 | \form#88:\[ x \sim \frac{1}{x\sigma\sqrt{2\pi}}\exp{-\frac{1}{2\sigma^2}(\log(x)-\mu)} \] | 
|---|
| 90 | \form#89:$\mathcal{I}$ | 
|---|
| 91 | \form#90:$\theta$ | 
|---|
| 92 | \form#91:$\alpha$ | 
|---|
| 93 | \form#92:$ \Psi $ | 
|---|
| 94 | \form#93:$ \nu $ | 
|---|
| 95 | \form#94:$ \nu-p-1 $ | 
|---|
| 96 | \form#95:$w$ | 
|---|
| 97 | \form#96:$x^{(i)}, i=1..n$ | 
|---|
| 98 | \form#97:\[ f(x_i|y_i), i=1..n \] | 
|---|
| 99 | \form#98:$ \cup [x_i,y_i] $ | 
|---|
| 100 | \form#99:\[ f(z_i|y_i,x_i) f(x_i|y_i) f(y_i) i=1..n \] | 
|---|
| 101 | \form#100:$ z_i $ | 
|---|
| 102 | \form#101:$ y_i={}, z_i={}, \forall i $ | 
|---|
| 103 | \form#102:$ f(z_i|x_i,y_i) $ | 
|---|
| 104 | \form#103:$ f(D) $ | 
|---|
| 105 | \form#104:\[ f(a,b,c) = f(a|b,c) f(b) f(c) \] | 
|---|
| 106 | \form#105:$ f(a|b,c) $ | 
|---|
| 107 | \form#106:$ f(b) $ | 
|---|
| 108 | \form#107:$ f(c) $ | 
|---|
| 109 | \form#108:\begin{eqnarray} x_t &= &A x_{t-1} + B u_{t} + v_t,\\ y_t &= &C x_{t} + D u_{t} + w_t, \end{eqnarray} | 
|---|
| 110 | \form#109:$ x_t $ | 
|---|
| 111 | \form#110:$ A, B, C, D$ | 
|---|
| 112 | \form#111:$v_t, w_t$ | 
|---|
| 113 | \form#112:$Q, R$ | 
|---|
| 114 | \form#113:\begin{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \end{eqnarray} | 
|---|
| 115 | \form#114:$ g(), h() $ | 
|---|
| 116 | \form#115:\[ y_t = \theta' \psi_t + \rho e_t \] | 
|---|
| 117 | \form#116:$[\theta,\rho]$ | 
|---|
| 118 | \form#117:$\psi_t$ | 
|---|
| 119 | \form#118:$\mathcal{N}(0,1)$ | 
|---|
| 120 | \form#119:\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \] | 
|---|
| 121 | \form#120:\[ \nu_t = \sum_{i=0}^{n} 1 \] | 
|---|
| 122 | \form#121:$ \theta_t , r_t $ | 
|---|
| 123 | \form#122:\[ V_t = \phi V_{t-1} + \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \] | 
|---|
| 124 | \form#123:\[ \nu_t = \phi \nu_{t-1} + 1 + (1-\phi) \nu_0 \] | 
|---|
| 125 | \form#124:$ \phi $ | 
|---|
| 126 | \form#125:$ \phi \in [0,1]$ | 
|---|
| 127 | \form#126:\[ \mathrm{win_length} = \frac{1}{1-\phi}\] | 
|---|
| 128 | \form#127:$ \phi=0.9 $ | 
|---|
| 129 | \form#128:$ V_0 , \nu_0 $ | 
|---|
| 130 | \form#129:$ V_t , \nu_t $ | 
|---|
| 131 | \form#130:$ \phi<1 $ | 
|---|