1 | \form#0:$f(x)$ |
---|
2 | \form#1:$x$ |
---|
3 | \form#2:$ f( x | y) $ |
---|
4 | \form#3:$ x $ |
---|
5 | \form#4:$ y $ |
---|
6 | \form#5:$ u_t $ |
---|
7 | \form#6:$ y_t $ |
---|
8 | \form#7:$ d_t=[y_t,u_t, \ldots ]$ |
---|
9 | \form#8:\[ f(\theta_t | d_1,\ldots,d_t) = \frac{f(y_t|\theta_t,\cdot) f(\theta_t|d_1,\ldots,d_{t-1})}{f(y_t|d_1,\ldots,d_{t-1})} \] |
---|
10 | \form#9:$y_t$ |
---|
11 | \form#10:$ c_t $ |
---|
12 | \form#11:\[ f(\theta_t | c_t, d_1,\ldots,d_t) \propto f(y_t,\theta_t|c_t,\cdot, d_1,\ldots,d_{t-1}) \] |
---|
13 | \form#12:$x=$ |
---|
14 | \form#13:$ f_x()$ |
---|
15 | \form#14:$ [x_1 , x_2 , \ldots \ $ |
---|
16 | \form#15:$ f_x(rv)$ |
---|
17 | \form#16:$x \sim epdf(rv|cond)$ |
---|
18 | \form#17:$[Up_{t-1},Up_{t-2}, \ldots]$ |
---|
19 | \form#18:$ t $ |
---|
20 | \form#19:$ t+1 $ |
---|
21 | \form#20:$ f(d_{t+1} |d_{t}, \ldots d_{0}) $ |
---|
22 | \form#21:$ f(d_{t+1} |d_{t+h-1}, \ldots d_{t}) $ |
---|
23 | \form#22:$t$ |
---|
24 | \form#23:$[y_{t} y_{t-1} ...]$ |
---|
25 | \form#24:$[y_t, u_t, y_{t-1 }, u_{t-1}, \ldots]$ |
---|
26 | \form#25:$ f(x_t|x_{t-1}) $ |
---|
27 | \form#26:$ f(d_t|x_t) $ |
---|
28 | \form#27:\[ L(y,u) = (y-y_{req})'Q_y (y-y_{req}) + (u-u_{req})' Q_u (u-u_{req}) \] |
---|
29 | \form#28:\[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \] |
---|
30 | \form#29:$[\theta r]$ |
---|
31 | \form#30:$\psi=\psi(y_{1:t},u_{1:t})$ |
---|
32 | \form#31:$u_t$ |
---|
33 | \form#32:$e_t$ |
---|
34 | \form#33:\[ e_t \sim \mathcal{N}(0,1). \] |
---|
35 | \form#34:$\theta,r$ |
---|
36 | \form#35:$ dt = [y_t psi_t] $ |
---|
37 | \form#36:\[ x_t = A x_{t-1} + B u_t + Q^{1/2} e_t \] |
---|
38 | \form#37:\[ y_t = C x_{t-1} + C u_t + Q^{1/2} w_t. \] |
---|
39 | \form#38:\[ x_{t+1} = Ax_t + B u_t + R^{1/2} e_t, y_t=Cx_t+Du_t + R^{1/2}w_t, \] |
---|
40 | \form#39:\[ \left[\begin{array}{cc} R^{0.5}\\ P_{t|t-1}^{0.5}C' & P_{t|t-1}^{0.5}CA'\\ & Q^{0.5}\end{array}\right]<\mathrm{orth.oper.}>=\left[\begin{array}{cc} R_{y}^{0.5} & KA'\\ & P_{t+1|t}^{0.5}\\ \\\end{array}\right]\] |
---|
41 | \form#40:\[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \] |
---|
42 | \form#41:$\psi$ |
---|
43 | \form#42:$w=[w_1,\ldots,w_n]$ |
---|
44 | \form#43:$\theta_i$ |
---|
45 | \form#44:$\Theta$ |
---|
46 | \form#45:$\Theta = [\theta_1,\ldots,\theta_n,w]$ |
---|
47 | \form#46:$A=Ch' Ch$ |
---|
48 | \form#47:$Ch$ |
---|
49 | \form#48:$f(x) = a$ |
---|
50 | \form#49:$f(x) = Ax+B$ |
---|
51 | \form#50:$f(x,u)$ |
---|
52 | \form#51:$f(x,u) = Ax+Bu$ |
---|
53 | \form#52:$f(x0,u0)$ |
---|
54 | \form#53:$A=\frac{d}{dx}f(x,u)|_{x0,u0}$ |
---|
55 | \form#54:$u$ |
---|
56 | \form#55:$A=\frac{d}{du}f(x,u)|_{x0,u0}$ |
---|
57 | \form#56:\[M = L'DL\] |
---|
58 | \form#57:$L$ |
---|
59 | \form#58:$D$ |
---|
60 | \form#59:$V = V + w v v'$ |
---|
61 | \form#60:$C$ |
---|
62 | \form#61:$V = C*V*C'$ |
---|
63 | \form#62:$V = C'*V*C$ |
---|
64 | \form#63:$V$ |
---|
65 | \form#64:$x= v'*V*v$ |
---|
66 | \form#65:$x= v'*inv(V)*v$ |
---|
67 | \form#66:$U$ |
---|
68 | \form#67:$A'D0 A$ |
---|
69 | \form#68:$L'DL$ |
---|
70 | \form#69:$A'*diag(D)*A = self.L'*diag(self.D)*self.L$ |
---|
71 | \form#70:\[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \] |
---|
72 | \form#71:$ f(rvc) = \int f(rv,rvc) d\ rv $ |
---|
73 | \form#72:\[ f(x) = \sum_{i=1}^{n} w_{i} f_i(x), \quad \sum_{i=1}^n w_i = 1. \] |
---|
74 | \form#73:$f_i(x)$ |
---|
75 | \form#74:$p$ |
---|
76 | \form#75:$p\times$ |
---|
77 | \form#76:$n$ |
---|
78 | \form#77:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^{\beta_i-1} \] |
---|
79 | \form#78:$\gamma=\sum_i \beta_i$ |
---|
80 | \form#79:\[ f(x|\alpha,\beta) = \prod f(x_i|\alpha_i,\beta_i) \] |
---|
81 | \form#80:$\beta$ |
---|
82 | \form#81:\[ x\sim iG(a,b) => 1/x\sim G(a,1/b) \] |
---|
83 | \form#82:$ \mu=A*\mbox{rvc}+\mu_0 $ |
---|
84 | \form#83:$\mu$ |
---|
85 | \form#84:$k$ |
---|
86 | \form#85:$\alpha=k$ |
---|
87 | \form#86:$\beta=k/\mu$ |
---|
88 | \form#87:$\mu/\sqrt(k)$ |
---|
89 | \form#88:$ \mu $ |
---|
90 | \form#89:$ k $ |
---|
91 | \form#90:$ \alpha=\mu/k^2+2 $ |
---|
92 | \form#91:$ \beta=\mu(\alpha-1)$ |
---|
93 | \form#92:$ \mu/\sqrt(k)$ |
---|
94 | \form#93:$l$ |
---|
95 | \form#94:\[ \mu = \mu_{t-1} ^{l} p^{1-l}\] |
---|
96 | \form#95:$ \log(x)\sim \mathcal{N}(\mu,\sigma^2) $ |
---|
97 | \form#96:\[ x \sim \frac{1}{x\sigma\sqrt{2\pi}}\exp{-\frac{1}{2\sigma^2}(\log(x)-\mu)} \] |
---|
98 | \form#97:$\mathcal{I}$ |
---|
99 | \form#98:$\theta$ |
---|
100 | \form#99:$\alpha$ |
---|
101 | \form#100:$ \Lambda $ |
---|
102 | \form#101:$ R $ |
---|
103 | \form#102:$ R_e $ |
---|
104 | \form#103:$ \Psi $ |
---|
105 | \form#104:$ \nu $ |
---|
106 | \form#105:$ \nu-p-1 $ |
---|
107 | \form#106:$w$ |
---|
108 | \form#107:$x^{(i)}, i=1..n$ |
---|
109 | \form#108:\[ f(x_i|y_i), i=1..n \] |
---|
110 | \form#109:$ \cup [x_i,y_i] $ |
---|
111 | \form#110:\[ f(z_i|y_i,x_i) f(x_i|y_i) f(y_i) i=1..n \] |
---|
112 | \form#111:$ z_i $ |
---|
113 | \form#112:$ y_i={}, z_i={}, \forall i $ |
---|
114 | \form#113:$ f(z_i|x_i,y_i) $ |
---|
115 | \form#114:$ f(D) $ |
---|
116 | \form#115:\[ f(a,b,c) = f(a|b,c) f(b) f(c) \] |
---|
117 | \form#116:$ f(a|b,c) $ |
---|
118 | \form#117:$ f(b) $ |
---|
119 | \form#118:$ f(c) $ |
---|
120 | \form#119:\begin{eqnarray} x_t &= &A x_{t-1} + B u_{t} + v_t,\\ y_t &= &C x_{t} + D u_{t} + w_t, \end{eqnarray} |
---|
121 | \form#120:$ x_t $ |
---|
122 | \form#121:$ A, B, C, D$ |
---|
123 | \form#122:$v_t, w_t$ |
---|
124 | \form#123:$Q, R$ |
---|
125 | \form#124:\begin{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \end{eqnarray} |
---|
126 | \form#125:$ g(), h() $ |
---|
127 | \form#126:\[ y_t = \theta' \psi_t + \rho e_t \] |
---|
128 | \form#127:$[\theta,\rho]$ |
---|
129 | \form#128:$\psi_t$ |
---|
130 | \form#129:$\mathcal{N}(0,1)$ |
---|
131 | \form#130:\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \] |
---|
132 | \form#131:\[ \nu_t = \sum_{i=0}^{n} 1 \] |
---|
133 | \form#132:$ \theta_t , r_t $ |
---|
134 | \form#133:\[ V_t = \phi V_{t-1} + \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \] |
---|
135 | \form#134:\[ \nu_t = \phi \nu_{t-1} + 1 + (1-\phi) \nu_0 \] |
---|
136 | \form#135:$ \phi $ |
---|
137 | \form#136:$ \phi \in [0,1]$ |
---|
138 | \form#137:\[ \mathrm{win_length} = \frac{1}{1-\phi}\] |
---|
139 | \form#138:$ \phi=0.9 $ |
---|
140 | \form#139:$ V_0 , \nu_0 $ |
---|
141 | \form#140:$ V_t , \nu_t $ |
---|
142 | \form#141:$ \phi<1 $ |
---|
143 | \form#142:$ f(a)$ |
---|
144 | \form#143:$ a $ |
---|
145 | \form#144:$ f(a) $ |
---|
146 | \form#145:$ f(x_t |d_1 \ldots d_t)$ |
---|
147 | \form#146:$ d $ |
---|
148 | \form#147:\[ y_t \sim \mathcal{N}( a y_{t-3} + b u_{t-1}, r) \] |
---|
149 | \form#148:$ a,b $ |
---|
150 | \form#149:$ r $ |
---|
151 | \form#150:$ y_{t-3}$ |
---|
152 | \form#151:$ u_{t-1}$ |
---|
153 | \form#152:$ u $ |
---|
154 | \form#153:$ f(y_{t}|y_{t-3},u_{t-1})$ |
---|
155 | \form#154:\[ u_t \sim \mathcal{N}(0, r_u) \] |
---|
156 | \form#155:\[ f(y_{t},u_{t}|y_{t-3},u_{t-1}) = f(y_{t}|y_{t-3},u_{t-1})f(u_{t}) \] |
---|
157 | \form#156:$ f(a|b)$ |
---|
158 | \form#157:$ f(u_t)$ |
---|
159 | \form#158:$ f(u_t| \{\})$ |
---|
160 | \form#159:$ _t $ |
---|
161 | \form#160:\[ f(a) = \mathcal{U}(-1,1) \] |
---|
162 | \form#161:\[ f(y_t|y_{t-3},u_{t-1}) = \mathcal{N}( a y_{t-3} + b u_{t-1}, r) \] |
---|
163 | \form#162:\[ f(u_t) = \mathcal{N}(0, r_u) \] |
---|
164 | \form#163:$ r_u $ |
---|