root/library/doc/html/intro.html @ 538

Revision 538, 8.1 kB (checked in by smidl, 15 years ago)

Documentation regenerated

RevLine 
[210]1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8">
3<title>mixpp: Introduction to Bayesian Decision Making Toolbox BDM</title>
[290]4<link href="tabs.css" rel="stylesheet" type="text/css">
[210]5<link href="doxygen.css" rel="stylesheet" type="text/css">
6</head><body>
[538]7<!-- Generated by Doxygen 1.5.8 -->
[271]8<script type="text/javascript">
9<!--
10function changeDisplayState (e){
11  var num=this.id.replace(/[^[0-9]/g,'');
12  var button=this.firstChild;
13  var sectionDiv=document.getElementById('dynsection'+num);
14  if (sectionDiv.style.display=='none'||sectionDiv.style.display==''){
15    sectionDiv.style.display='block';
16    button.src='open.gif';
17  }else{
18    sectionDiv.style.display='none';
19    button.src='closed.gif';
20  }
21}
22function initDynSections(){
23  var divs=document.getElementsByTagName('div');
24  var sectionCounter=1;
25  for(var i=0;i<divs.length-1;i++){
26    if(divs[i].className=='dynheader'&&divs[i+1].className=='dynsection'){
27      var header=divs[i];
28      var section=divs[i+1];
29      var button=header.firstChild;
30      if (button!='IMG'){
31        divs[i].insertBefore(document.createTextNode(' '),divs[i].firstChild);
32        button=document.createElement('img');
33        divs[i].insertBefore(button,divs[i].firstChild);
34      }
35      header.style.cursor='pointer';
36      header.onclick=changeDisplayState;
37      header.id='dynheader'+sectionCounter;
38      button.src='closed.gif';
39      section.id='dynsection'+sectionCounter;
40      section.style.display='none';
41      section.style.marginLeft='14px';
42      sectionCounter++;
43    }
44  }
45}
46window.onload = initDynSections;
47-->
48</script>
[210]49<div class="navigation" id="top">
50  <div class="tabs">
51    <ul>
[271]52      <li><a href="main.html"><span>Main&nbsp;Page</span></a></li>
[290]53      <li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
54      <li><a href="annotated.html"><span>Classes</span></a></li>
[210]55      <li><a href="files.html"><span>Files</span></a></li>
56    </ul>
57  </div>
[271]58  <div class="navpath"><a class="el" href="manual.html">User Manual</a>
59  </div>
[210]60</div>
61<div class="contents">
62<h1><a class="anchor" name="intro">Introduction to Bayesian Decision Making Toolbox BDM </a></h1>This is a brief introduction into elements used in the BDM. The toolbox was designed for two principle tasks:<p>
63<ul>
64<li>
65Design of Bayesian decisions-making startegies,  </li>
66<li>
67Bayesian system identification for on-line and off-line scenarios.  </li>
68</ul>
69Theoretically, the latter is a special case of the former, however we list it separately to highlight its importance in practical applications.<p>
[271]70Here, we describe basic objects that are required for implementation of the Bayesian parameter estimation.<p>
71Key objects are: <dl>
72<dt>Bayesian Model: class <code>BM</code>  </dt>
73<dd>which is an encapsulation of the likelihood function, the prior and methodology of evaluation of the Bayes rule. This methodology may be either exact or approximate. </dd>
74<dt>Posterior density of the parameter: class <code>epdf</code>  </dt>
75<dd>representing posterior density of the parameter. Methods defined on this class allow any manipulation of the posterior, such as moment evaluation, marginalization and conditioning.  </dd>
[210]76</dl>
[271]77<h2><a class="anchor" name="bm">
78Class BM</a></h2>
79The class BM is designed for both on-line and off-line estimation. We make the following assumptions about data: <ul>
[210]80<li>
[271]81an individual data record is stored in a vector, <code>vec</code> <code>dt</code></li>
[210]82<li>
[271]83a set of data records is stored in a matrix,<code>mat</code> <code>D</code>, where each column represent one individual data record  </li>
[210]84</ul>
85<p>
[271]86On-line estimation is implemented by method <div class="fragment"><pre class="fragment"> <span class="keywordtype">void</span> bayes(vec dt)
87</pre></div> Off-line estimation is implemented by method <div class="fragment"><pre class="fragment"> <span class="keywordtype">void</span> bayesB(mat D)
88</pre></div><p>
[397]89As an intermediate product, the bayes rule computes marginal likelihood of the data records <img class="formulaInl" alt="$ f(D) $" src="form_103.png">. Numerical value of this quantity which is important e.g. for model selection can be obtained by calling method <code>_ll()</code>.<h2><a class="anchor" name="epdf">
[271]90Getting results from BM</a></h2>
91Class <code>BM</code> offers several ways how to obtain results: <ul>
92<li>
93generation of posterior or predictive pdfs, methods <code>_epdf()</code> and <code>predictor()</code>  </li>
94<li>
95direct evaluation of predictive likelihood, method <code>logpred()</code>  </li>
96</ul>
97Underscore in the name of method <code>_epdf()</code> indicate that the method returns a pointer to the internal posterior density of the model. On the other hand, <code>predictor</code> creates a new structure of type <code>epdf()</code>.<p>
98Direct evaluation of predictive pdfs via logpred offers a shortcut for more efficient implementation.<h2><a class="anchor" name="epdf">
99Getting results from BM</a></h2>
100As introduced above, the results of parameter estimation are in the form of probability density function conditioned on numerical values. This type of information is represented by class <code>epdf</code>.<p>
[354]101This class allows such as moment evaluation via methods <code>mean()</code> and <code>variance()</code>, marginalization via method <code>marginal()</code>, and conditioning via method <code>condition()</code>.<p>
[271]102Also, it allows generation of a sample via <code>sample()</code> and evaluation of one value of the posterior parameter likelihood via <code>evallog()</code>. Multivariate versions of these operations are also available by adding suffix <code>_m</code>, i.e. <code>sample_m()</code> and <code>evallog_m()</code>. These methods providen multiple samples and evaluation of likelihood in multiple points respectively.<h2><a class="anchor" name="pc">
103Classes for probability calculus</a></h2>
104When a more demanding task then generation of point estimate of the parameter is required, the power of general probability claculus can be used. The following classes (together with <code>epdf</code> introduced above) form the basis of the calculus: <ul>
105<li>
106<code>mpdf</code> a pdf conditioned on another symbolic variable, </li>
107<li>
108<code>RV</code> a symbolic variable on which pdfs are defined. </li>
109</ul>
110The former class is an extension of mpdf that allows conditioning on a symbolic variable. Hence, when numerical results - such as samples - are required, numericla values of the condition must be provided. The names of methods of the <code>epdf</code> are used extended by suffix <code>cond</code>, i.e. <code>samplecond()</code>, <code>evallogcond()</code>, where <code>cond</code> precedes matrix estension, i.e. <code>samplecond_m()</code> and <code>evallogcond_m()</code>.<p>
111The latter class is used to identify how symbolic variables are to be combined together. For example, consider the task of composition of pdfs via the chain rule: <p class="formulaDsp">
[397]112<img class="formulaDsp" alt="\[ f(a,b,c) = f(a|b,c) f(b) f(c) \]" src="form_104.png">
[271]113<p>
[397]114 In our setup, <img class="formulaInl" alt="$ f(a|b,c) $" src="form_105.png"> is represented by an <code>mpdf</code> while <img class="formulaInl" alt="$ f(b) $" src="form_106.png"> and <img class="formulaInl" alt="$ f(c) $" src="form_107.png"> by two <code>epdfs</code>. We need to distinguish the latter two from each other and to deside in which order they should be added to the mpdf. This distinction is facilitated by the class <code>RV</code> which uniquely identify a random varibale.<p>
[271]115Therefore, each pdf keeps record on which RVs it represents; <code>epdf</code> needs to know only one <code>RV</code> stored in the attribute <code>rv</code>; <code>mpdf</code> needs to keep two <code>RVs</code>, one for variable on which it is defined (<code>rv</code>) and one for variable incondition which is stored in attribute <code>rvc</code>. </div>
[538]116<hr size="1"><address style="text-align: right;"><small>Generated on Sun Aug 16 17:58:18 2009 for mixpp by&nbsp;
[210]117<a href="http://www.doxygen.org/index.html">
[538]118<img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.8 </small></address>
[210]119</body>
120</html>
Note: See TracBrowser for help on using the browser.