root/library/doc/html/intro.html @ 638

Revision 632, 8.3 kB (checked in by smidl, 15 years ago)

doc + updated tutorial

Line 
1<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
2<html xmlns="http://www.w3.org/1999/xhtml">
3<head>
4<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
5<title>mixpp: Introduction to Bayesian Decision Making Toolbox BDM</title>
6<link href="tabs.css" rel="stylesheet" type="text/css"/>
7<link href="doxygen.css" rel="stylesheet" type="text/css"/>
8</head>
9<body>
10<!-- Generated by Doxygen 1.6.1 -->
11<script type="text/javascript">
12<!--
13function changeDisplayState (e){
14  var num=this.id.replace(/[^[0-9]/g,'');
15  var button=this.firstChild;
16  var sectionDiv=document.getElementById('dynsection'+num);
17  if (sectionDiv.style.display=='none'||sectionDiv.style.display==''){
18    sectionDiv.style.display='block';
19    button.src='open.gif';
20  }else{
21    sectionDiv.style.display='none';
22    button.src='closed.gif';
23  }
24}
25function initDynSections(){
26  var divs=document.getElementsByTagName('div');
27  var sectionCounter=1;
28  for(var i=0;i<divs.length-1;i++){
29    if(divs[i].className=='dynheader'&&divs[i+1].className=='dynsection'){
30      var header=divs[i];
31      var section=divs[i+1];
32      var button=header.firstChild;
33      if (button!='IMG'){
34        divs[i].insertBefore(document.createTextNode(' '),divs[i].firstChild);
35        button=document.createElement('img');
36        divs[i].insertBefore(button,divs[i].firstChild);
37      }
38      header.style.cursor='pointer';
39      header.onclick=changeDisplayState;
40      header.id='dynheader'+sectionCounter;
41      button.src='closed.gif';
42      section.id='dynsection'+sectionCounter;
43      section.style.display='none';
44      section.style.marginLeft='14px';
45      sectionCounter++;
46    }
47  }
48}
49window.onload = initDynSections;
50-->
51</script>
52<div class="navigation" id="top">
53  <div class="tabs">
54    <ul>
55      <li><a href="main.html"><span>Main&nbsp;Page</span></a></li>
56      <li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
57      <li><a href="annotated.html"><span>Classes</span></a></li>
58      <li><a href="files.html"><span>Files</span></a></li>
59    </ul>
60  </div>
61  <div class="navpath"><a class="el" href="dev_guide.html">BDM Use - in C++</a>
62  </div>
63</div>
64<div class="contents">
65
66
67<h1><a class="anchor" id="intro">Introduction to Bayesian Decision Making Toolbox BDM </a></h1><p>This is a brief introduction into elements used in the BDM. The toolbox was designed for two principle tasks:</p>
68<ul>
69<li>
70Design of Bayesian decisions-making startegies,  </li>
71<li>
72Bayesian system identification for on-line and off-line scenarios.  </li>
73</ul>
74<p>Theoretically, the latter is a special case of the former, however we list it separately to highlight its importance in practical applications.</p>
75<p>Here, we describe basic objects that are required for implementation of the Bayesian parameter estimation.</p>
76<p>Key objects are: </p>
77<dl>
78<dt>Bayesian Model: class <code>BM</code>  </dt>
79<dd>which is an encapsulation of the likelihood function, the prior and methodology of evaluation of the Bayes rule. This methodology may be either exact or approximate. </dd>
80<dt>Posterior density of the parameter: class <code>epdf</code>  </dt>
81<dd>representing posterior density of the parameter. Methods defined on this class allow any manipulation of the posterior, such as moment evaluation, marginalization and conditioning.  </dd>
82</dl>
83<h2><a class="anchor" id="bm">
84Class BM</a></h2>
85<p>The class BM is designed for both on-line and off-line estimation. We make the following assumptions about data: </p>
86<ul>
87<li>
88an individual data record is stored in a vector, <code>vec</code> <code>dt</code></li>
89<li>
90a set of data records is stored in a matrix,<code>mat</code> <code>D</code>, where each column represent one individual data record  </li>
91</ul>
92<p>On-line estimation is implemented by method </p>
93<div class="fragment"><pre class="fragment"> <span class="keywordtype">void</span> bayes(vec dt)
94</pre></div><p> Off-line estimation is implemented by method </p>
95<div class="fragment"><pre class="fragment"> <span class="keywordtype">void</span> bayesB(mat D)
96</pre></div><p>As an intermediate product, the bayes rule computes marginal likelihood of the data records <img class="formulaInl" alt="$ f(D) $" src="form_114.png"/>. Numerical value of this quantity which is important e.g. for model selection can be obtained by calling method <code>_ll()</code>.</p>
97<h2><a class="anchor" id="epdf">
98Getting results from BM</a></h2>
99<p>Class <code>BM</code> offers several ways how to obtain results: </p>
100<ul>
101<li>
102generation of posterior or predictive pdfs, methods <code>_epdf()</code> and <code>predictor()</code>  </li>
103<li>
104direct evaluation of predictive likelihood, method <code>logpred()</code>  </li>
105</ul>
106<p>Underscore in the name of method <code>_epdf()</code> indicate that the method returns a pointer to the internal posterior density of the model. On the other hand, <code>predictor</code> creates a new structure of type <code>epdf()</code>.</p>
107<p>Direct evaluation of predictive pdfs via logpred offers a shortcut for more efficient implementation.</p>
108<h2><a class="anchor" id="epdf">
109Getting results from BM</a></h2>
110<p>As introduced above, the results of parameter estimation are in the form of probability density function conditioned on numerical values. This type of information is represented by class <code>epdf</code>.</p>
111<p>This class allows such as moment evaluation via methods <code>mean()</code> and <code>variance()</code>, marginalization via method <code>marginal()</code>, and conditioning via method <code>condition()</code>.</p>
112<p>Also, it allows generation of a sample via <code>sample()</code> and evaluation of one value of the posterior parameter likelihood via <code>evallog()</code>. Multivariate versions of these operations are also available by adding suffix <code>_m</code>, i.e. <code>sample_m()</code> and <code>evallog_m()</code>. These methods providen multiple samples and evaluation of likelihood in multiple points respectively.</p>
113<h2><a class="anchor" id="pc">
114Classes for probability calculus</a></h2>
115<p>When a more demanding task then generation of point estimate of the parameter is required, the power of general probability claculus can be used. The following classes (together with <code>epdf</code> introduced above) form the basis of the calculus: </p>
116<ul>
117<li>
118<code>mpdf</code> a pdf conditioned on another symbolic variable, </li>
119<li>
120<code>RV</code> a symbolic variable on which pdfs are defined. </li>
121</ul>
122<p>The former class is an extension of mpdf that allows conditioning on a symbolic variable. Hence, when numerical results - such as samples - are required, numericla values of the condition must be provided. The names of methods of the <code>epdf</code> are used extended by suffix <code>cond</code>, i.e. <code>samplecond()</code>, <code>evallogcond()</code>, where <code>cond</code> precedes matrix estension, i.e. <code>samplecond_m()</code> and <code>evallogcond_m()</code>.</p>
123<p>The latter class is used to identify how symbolic variables are to be combined together. For example, consider the task of composition of pdfs via the chain rule: </p>
124<p class="formulaDsp">
125<img class="formulaDsp" alt="\[ f(a,b,c) = f(a|b,c) f(b) f(c) \]" src="form_115.png"/>
126</p>
127<p> In our setup, <img class="formulaInl" alt="$ f(a|b,c) $" src="form_116.png"/> is represented by an <code>mpdf</code> while <img class="formulaInl" alt="$ f(b) $" src="form_117.png"/> and <img class="formulaInl" alt="$ f(c) $" src="form_118.png"/> by two <code>epdfs</code>. We need to distinguish the latter two from each other and to deside in which order they should be added to the mpdf. This distinction is facilitated by the class <code>RV</code> which uniquely identify a random varibale.</p>
128<p>Therefore, each pdf keeps record on which RVs it represents; <code>epdf</code> needs to know only one <code>RV</code> stored in the attribute <code>rv</code>; <code>mpdf</code> needs to keep two <code>RVs</code>, one for variable on which it is defined (<code>rv</code>) and one for variable incondition which is stored in attribute <code>rvc</code>. </p>
129</div>
130<hr size="1"/><address style="text-align: right;"><small>Generated on Fri Sep 18 00:12:03 2009 for mixpp by&nbsp;
131<a href="http://www.doxygen.org/index.html">
132<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
133</body>
134</html>
Note: See TracBrowser for help on using the browser.