root/library/doc/html/tut_arx.html @ 641

Revision 641, 8.8 kB (checked in by smidl, 15 years ago)

doc

RevLine 
[591]1<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
2<html xmlns="http://www.w3.org/1999/xhtml">
3<head>
4<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
[275]5<title>mixpp: Theory of ARX model estimation</title>
[591]6<link href="tabs.css" rel="stylesheet" type="text/css"/>
7<link href="doxygen.css" rel="stylesheet" type="text/css"/>
8</head>
9<body>
10<!-- Generated by Doxygen 1.6.1 -->
[275]11<script type="text/javascript">
12<!--
13function changeDisplayState (e){
14  var num=this.id.replace(/[^[0-9]/g,'');
15  var button=this.firstChild;
16  var sectionDiv=document.getElementById('dynsection'+num);
17  if (sectionDiv.style.display=='none'||sectionDiv.style.display==''){
18    sectionDiv.style.display='block';
19    button.src='open.gif';
20  }else{
21    sectionDiv.style.display='none';
22    button.src='closed.gif';
23  }
24}
25function initDynSections(){
26  var divs=document.getElementsByTagName('div');
27  var sectionCounter=1;
28  for(var i=0;i<divs.length-1;i++){
29    if(divs[i].className=='dynheader'&&divs[i+1].className=='dynsection'){
30      var header=divs[i];
31      var section=divs[i+1];
32      var button=header.firstChild;
33      if (button!='IMG'){
34        divs[i].insertBefore(document.createTextNode(' '),divs[i].firstChild);
35        button=document.createElement('img');
36        divs[i].insertBefore(button,divs[i].firstChild);
37      }
38      header.style.cursor='pointer';
39      header.onclick=changeDisplayState;
40      header.id='dynheader'+sectionCounter;
41      button.src='closed.gif';
42      section.id='dynsection'+sectionCounter;
43      section.style.display='none';
44      section.style.marginLeft='14px';
45      sectionCounter++;
46    }
47  }
48}
49window.onload = initDynSections;
50-->
51</script>
52<div class="navigation" id="top">
53  <div class="tabs">
54    <ul>
55      <li><a href="main.html"><span>Main&nbsp;Page</span></a></li>
[290]56      <li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
57      <li><a href="annotated.html"><span>Classes</span></a></li>
[275]58      <li><a href="files.html"><span>Files</span></a></li>
59    </ul>
60  </div>
61  <div class="navpath"><a class="el" href="tutorial.html">Tutorial in Bayesian estimation</a>
62  </div>
63</div>
64<div class="contents">
[591]65
66
67<h1><a class="anchor" id="tut_arx">Theory of ARX model estimation </a></h1><p></p>
68<p>The <code>ARX</code> (AutoregRessive with eXogeneous input) model is defined as follows: </p>
69<p class="formulaDsp">
[608]70<img class="formulaDsp" alt="\[ y_t = \theta' \psi_t + \rho e_t \]" src="form_126.png"/>
[591]71</p>
[608]72<p> where <img class="formulaInl" alt="$y_t$" src="form_9.png"/> is the system output, <img class="formulaInl" alt="$[\theta,\rho]$" src="form_127.png"/> is vector of unknown parameters, <img class="formulaInl" alt="$\psi_t$" src="form_128.png"/> is an vector of data-dependent regressors, and noise <img class="formulaInl" alt="$e_t$" src="form_32.png"/> is assumed to be Normal distributed <img class="formulaInl" alt="$\mathcal{N}(0,1)$" src="form_129.png"/>.</p>
[591]73<p>Special cases include: </p>
74<ul>
[275]75<li>estimation of unknown mean and variance of a Gaussian density from independent samples.</li>
76</ul>
[591]77<h2><a class="anchor" id="off">
[275]78Off-line estimation:</a></h2>
[591]79<p>This particular model belongs to the exponential family, hence it has conjugate distribution (i.e. both prior and posterior) of the Gauss-inverse-Wishart form. See [ref]</p>
80<p>Estimation of this family can be achieved by accumulation of sufficient statistics. The sufficient statistics Gauss-inverse-Wishart density is composed of: </p>
81<dl>
[275]82<dt>Information matrix </dt>
83<dd>which is a sum of outer products <p class="formulaDsp">
[608]84<img class="formulaDsp" alt="\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \]" src="form_130.png"/>
[591]85</p>
[275]86 </dd>
87<dt>"Degree of freedom" </dt>
88<dd>which is an accumulator of number of data records <p class="formulaDsp">
[608]89<img class="formulaDsp" alt="\[ \nu_t = \sum_{i=0}^{n} 1 \]" src="form_131.png"/>
[591]90</p>
[275]91 </dd>
92</dl>
[591]93<h2><a class="anchor" id="on">
[275]94On-line estimation</a></h2>
[591]95<p>For online estimation with stationary parameters can be easily achieved by collecting the sufficient statistics described above recursively.</p>
[608]96<p>Extension to non-stationaly parameters, <img class="formulaInl" alt="$ \theta_t , r_t $" src="form_132.png"/> can be achieved by operation called forgetting. This is an approximation of Bayesian filtering see [Kulhavy]. The resulting algorithm is defined by manipulation of sufficient statistics: </p>
[591]97<dl>
[275]98<dt>Information matrix </dt>
99<dd>which is a sum of outer products <p class="formulaDsp">
[608]100<img class="formulaDsp" alt="\[ V_t = \phi V_{t-1} + \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \]" src="form_133.png"/>
[591]101</p>
[538]102  </dd>
[275]103<dt>"Degree of freedom" </dt>
104<dd>which is an accumulator of number of data records <p class="formulaDsp">
[608]105<img class="formulaDsp" alt="\[ \nu_t = \phi \nu_{t-1} + 1 + (1-\phi) \nu_0 \]" src="form_134.png"/>
[591]106</p>
[538]107  </dd>
[275]108</dl>
[608]109<p>where <img class="formulaInl" alt="$ \phi $" src="form_135.png"/> is the forgetting factor, typically <img class="formulaInl" alt="$ \phi \in [0,1]$" src="form_136.png"/> roughly corresponding to the effective length of the exponential window by relation:</p>
[591]110<p class="formulaDsp">
[608]111<img class="formulaDsp" alt="\[ \mathrm{win_length} = \frac{1}{1-\phi}\]" src="form_137.png"/>
[591]112</p>
[608]113<p> Hence, <img class="formulaInl" alt="$ \phi=0.9 $" src="form_138.png"/> corresponds to estimation on exponential window of effective length 10 samples.</p>
114<p>Statistics <img class="formulaInl" alt="$ V_0 , \nu_0 $" src="form_139.png"/> are called alternative statistics, their role is to stabilize estimation. It is easy to show that for zero data, the statistics <img class="formulaInl" alt="$ V_t , \nu_t $" src="form_140.png"/> converge to the alternative statistics.</p>
[591]115<h2><a class="anchor" id="str">
[275]116Structure estimation</a></h2>
[608]117<p>For this model, structure estimation is a form of model selection procedure. Specifically, we compare hypotheses that the data were generated by the full model with hypotheses that some regressors in vector <img class="formulaInl" alt="$\psi$" src="form_41.png"/> are redundant. The number of possible hypotheses is then the number of all possible combinations of all regressors.</p>
118<p>However, due to property known as nesting in exponential family, these hypotheses can be tested using only the posterior statistics. (This property does no hold for forgetting <img class="formulaInl" alt="$ \phi<1 $" src="form_141.png"/>). Hence, for low dimensional problems, this can be done by a tree search (method <a class="el" href="classbdm_1_1ARX.html#a16b02ae03316751664c22d59d90c1e34" title="Brute force structure estimation.">bdm::ARX::structure_est()</a>). Or more sophisticated algorithm [ref Ludvik]</p>
[591]119<h2><a class="anchor" id="soft">
[275]120Software Image</a></h2>
[591]121<p>Estimation of the ARX model is implemented in class <a class="el" href="classbdm_1_1ARX.html" title="Linear Autoregressive model with Gaussian noise.">bdm::ARX</a>. </p>
122<ul>
[275]123<li>models from exponential family share some properties, these are encoded in class <a class="el" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">bdm::BMEF</a> which is the parent of ARX </li>
124<li>one of the parameters of <a class="el" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">bdm::BMEF</a> is the forgetting factor which is stored in attribute <code>frg</code>, </li>
125<li>posterior density is stored inside the estimator in the form of <a class="el" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">bdm::egiw</a> </li>
126<li>references to statistics of the internal <code>egiw</code> class, i.e. attributes <code>V</code> and <code>nu</code> are established for convenience.</li>
127</ul>
[591]128<h2><a class="anchor" id="try">
[275]129How to try</a></h2>
[608]130<p>The best way to experiment with this object is to run matlab script <code>arx_test.m</code> located in directory <code></code>./library/tutorial. See <a class="el" href="arx_ui.html">Running experiment <code>estimator</code> with ARX data fields  this page is out of date, as the user info concept has been changed</a> for detailed description.</p>
[275]131<ul>
132<li>In default setup, the parameters converge to the true values as expected. </li>
133<li>Try changing the forgetting factor, field <code>estimator.frg</code>, to values &lt;1. You should see increased lower and upper bounds on the estimates. </li>
134<li>Try different set of parameters, filed <code>system.theta</code>, you should note that poles close to zero are harder to identify. </li>
135</ul>
136</div>
[641]137<hr size="1"/><address style="text-align: right;"><small>Generated on Sun Sep 27 00:49:05 2009 for mixpp by&nbsp;
[275]138<a href="http://www.doxygen.org/index.html">
[591]139<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
[275]140</body>
141</html>
Note: See TracBrowser for help on using the browser.