1 | #include "stat/exp_family.h" |
---|
2 | #include "stat/mixtures.h" |
---|
3 | using namespace bdm; |
---|
4 | |
---|
5 | //These lines are needed for use of cout and endl |
---|
6 | using std::cout; |
---|
7 | using std::endl; |
---|
8 | |
---|
9 | double normcoef ( const epdf* ep,const vec &xb, const vec &yb, int Ngr=100 ) { |
---|
10 | mat PPdf ( Ngr+1,Ngr+1 ); |
---|
11 | vec rgr ( 2 ); |
---|
12 | |
---|
13 | int i=0,j=0; |
---|
14 | double xstep= ( xb ( 1 )-xb ( 0 ) ) /Ngr; |
---|
15 | double ystep= ( yb ( 1 )-yb ( 0 ) ) /Ngr; |
---|
16 | |
---|
17 | for ( double x=xb ( 0 );x<=xb ( 1 );x+= xstep,i++ ) { |
---|
18 | rgr ( 0 ) =x;j=0; |
---|
19 | for ( double y=yb ( 0 );y<=yb ( 1 );y+=ystep,j++ ) { |
---|
20 | rgr ( 1 ) =y; |
---|
21 | PPdf ( i,j ) =exp ( ep->evallog ( rgr ) ); |
---|
22 | } |
---|
23 | } |
---|
24 | return sumsum ( PPdf ) *xstep*ystep; |
---|
25 | } |
---|
26 | |
---|
27 | int main() { |
---|
28 | RNG_randomize(); |
---|
29 | |
---|
30 | cout << "Testing enorm(2,2)"<<endl; |
---|
31 | // Setup model |
---|
32 | vec mu ( "1.1 -1" ); |
---|
33 | ldmat R ( mat ( "1 -0.5; -0.5 2" ) ); |
---|
34 | |
---|
35 | RV x ( "{x }" ); |
---|
36 | RV y ( "{y }" ); |
---|
37 | |
---|
38 | enorm<ldmat> E; |
---|
39 | E.set_rv(concat(x,y)); |
---|
40 | E.set_parameters ( mu,R ); |
---|
41 | cout << "enorm mean value:" << E.mean() <<endl; |
---|
42 | cout << "enorm mean variance:" << R.to_mat() <<endl; |
---|
43 | cout << "enorm normalizing constant:" << E.lognc() <<endl; |
---|
44 | cout << " Numerically integrates to [1.0]: " << normcoef ( &E, vec ( "-5 5" ), vec ( "-5 5" ) ) << endl; |
---|
45 | |
---|
46 | int N=1000; |
---|
47 | vec ll ( N ); |
---|
48 | mat Smp=E.sample ( 1000 ); |
---|
49 | vec Emu = sum ( Smp,2 ) /N; |
---|
50 | mat Er = ( Smp*Smp.transpose() ) /N - outer_product ( Emu,Emu ); |
---|
51 | |
---|
52 | cout << "original empirical mean: " <<Emu <<endl; |
---|
53 | cout << "original empirical variance: " <<Er <<endl; |
---|
54 | |
---|
55 | epdf* Mg = E.marginal ( y ); |
---|
56 | mpdf* Cn = E.condition ( x ); |
---|
57 | |
---|
58 | |
---|
59 | cout<< "marginal mean: " << Mg->mean() <<endl; |
---|
60 | |
---|
61 | cout << "========== putting them back together ======= "<<endl; |
---|
62 | mepdf mMg ( Mg ); |
---|
63 | Array<mpdf*> A ( 2 ); |
---|
64 | A ( 0 ) = Cn; |
---|
65 | A ( 1 ) = &mMg; |
---|
66 | mprod mEp ( A ); |
---|
67 | |
---|
68 | Smp=mEp.samplecond ( vec ( 0 ),1000 ); |
---|
69 | Emu = sum ( Smp,2 ) /N; |
---|
70 | Er = ( Smp*Smp.transpose() ) /N - outer_product ( Emu,Emu ); |
---|
71 | |
---|
72 | cout << "composite mean: " <<Emu <<endl; |
---|
73 | cout << "composite variance: " <<Er <<endl; |
---|
74 | |
---|
75 | cout << endl << " test of pdflog at zero "<<endl; |
---|
76 | cout << "original: " << E.evallog(vec("0 0")) <<endl; |
---|
77 | cout << "composite: " << mEp.evallogcond(vec("0 0"),vec(0)) << endl; |
---|
78 | } |
---|