1 | #define BDMLIB // not an ideal way to prevent double registration of UI factories... |
---|
2 | #include "stat/exp_family.h" |
---|
3 | #include "stat/emix.h" |
---|
4 | #include "mat_checks.h" |
---|
5 | #include "UnitTest++.h" |
---|
6 | |
---|
7 | using namespace bdm; |
---|
8 | |
---|
9 | const double epsilon = 0.00001; |
---|
10 | |
---|
11 | namespace UnitTest |
---|
12 | { |
---|
13 | |
---|
14 | inline void CheckClose(TestResults &results, const itpp::vec &expected, |
---|
15 | const itpp::vec &actual, double tolerance, |
---|
16 | TestDetails const& details) { |
---|
17 | if (!AreClose(expected, actual, tolerance)) { |
---|
18 | MemoryOutStream stream; |
---|
19 | stream << "Expected " << expected << " +/- " << tolerance << " but was " << actual; |
---|
20 | |
---|
21 | results.OnTestFailure(details, stream.GetText()); |
---|
22 | } |
---|
23 | } |
---|
24 | |
---|
25 | inline void CheckClose(TestResults &results, const itpp::mat &expected, |
---|
26 | const itpp::mat &actual, double tolerance, |
---|
27 | TestDetails const& details) { |
---|
28 | if (!AreClose(expected, actual, tolerance)) { |
---|
29 | MemoryOutStream stream; |
---|
30 | stream << "Expected " << expected << " +/- " << tolerance << " but was " << actual; |
---|
31 | |
---|
32 | results.OnTestFailure(details, stream.GetText()); |
---|
33 | } |
---|
34 | } |
---|
35 | |
---|
36 | } |
---|
37 | |
---|
38 | double normcoef ( const epdf* ep,const vec &xb, const vec &yb, int Ngr=100 ) { |
---|
39 | mat PPdf ( Ngr+1,Ngr+1 ); |
---|
40 | vec rgr ( 2 ); |
---|
41 | |
---|
42 | int i=0,j=0; |
---|
43 | double xstep= ( xb ( 1 )-xb ( 0 ) ) /Ngr; |
---|
44 | double ystep= ( yb ( 1 )-yb ( 0 ) ) /Ngr; |
---|
45 | |
---|
46 | for ( double x=xb ( 0 );x<=xb ( 1 );x+= xstep,i++ ) { |
---|
47 | rgr ( 0 ) =x;j=0; |
---|
48 | for ( double y=yb ( 0 );y<=yb ( 1 );y+=ystep,j++ ) { |
---|
49 | rgr ( 1 ) =y; |
---|
50 | PPdf ( i,j ) =exp ( ep->evallog ( rgr ) ); |
---|
51 | } |
---|
52 | } |
---|
53 | return sumsum ( PPdf ) *xstep*ystep; |
---|
54 | } |
---|
55 | |
---|
56 | TEST(test_enorm) { |
---|
57 | RNG_randomize(); |
---|
58 | |
---|
59 | // Setup model |
---|
60 | vec mu("1.1 -1"); |
---|
61 | ldmat R(mat("1 -0.5; -0.5 2")); |
---|
62 | |
---|
63 | RV x("{x }"); |
---|
64 | RV y("{y }"); |
---|
65 | |
---|
66 | enorm<ldmat> E; |
---|
67 | E.set_rv(concat(x,y)); |
---|
68 | E.set_parameters(mu, R); |
---|
69 | CHECK_EQUAL(mu, E.mean()); |
---|
70 | CHECK_CLOSE(2.11768, E.lognc(), epsilon); |
---|
71 | CHECK_CLOSE(1.0, normcoef(&E, vec("-5 5"), vec("-5 5")), 0.01); |
---|
72 | |
---|
73 | int N = 1000; |
---|
74 | vec ll(N); |
---|
75 | mat Smp = E.sample(1000); |
---|
76 | vec Emu = sum(Smp, 2) / N; |
---|
77 | CHECK_CLOSE(mu, Emu, 0.3); |
---|
78 | |
---|
79 | mat Er = (Smp * Smp.T()) / N - outer_product(Emu, Emu); |
---|
80 | CHECK_CLOSE(R.to_mat(), Er, 0.3); |
---|
81 | |
---|
82 | epdf *Mg = E.marginal(y); |
---|
83 | CHECK_CLOSE(vec("-1"), Mg->mean(), epsilon); |
---|
84 | |
---|
85 | // putting them back together |
---|
86 | mpdf *Cn = E.condition(x); |
---|
87 | mepdf mMg(Mg); |
---|
88 | Array<mpdf *> A(2); |
---|
89 | A(0) = Cn; |
---|
90 | A(1) = &mMg; |
---|
91 | mprod mEp(A); |
---|
92 | Smp = mEp.samplecond(vec(0), 1000); |
---|
93 | Emu = sum(Smp, 2) / N; |
---|
94 | CHECK_CLOSE(mu, Emu, 0.3); |
---|
95 | |
---|
96 | Er = (Smp * Smp.T()) / N - outer_product(Emu, Emu); |
---|
97 | CHECK_CLOSE(R.to_mat(), Er, 0.3); |
---|
98 | |
---|
99 | // test of pdflog at zero |
---|
100 | vec zero(0); |
---|
101 | vec zero2("0 0"); |
---|
102 | CHECK_CLOSE(E.evallog(zero2), mEp.evallogcond(zero2, zero), epsilon); |
---|
103 | } |
---|
104 | |
---|
105 | // from testEpdf |
---|
106 | TEST(test_enorm_sum) { |
---|
107 | vec x = "-10:0.1:10"; |
---|
108 | vec y = "-10:0.1:10"; |
---|
109 | |
---|
110 | RV rv("{x2 }", "2"); |
---|
111 | vec mu0 = "0.0 0.0"; |
---|
112 | mat V0 = "5 -0.05; -0.05 5.20"; |
---|
113 | fsqmat R(V0); |
---|
114 | |
---|
115 | enorm<fsqmat> eN; |
---|
116 | eN.set_rv(rv); |
---|
117 | eN.set_parameters(mu0, R); |
---|
118 | |
---|
119 | vec pom(2); |
---|
120 | double suma = 0.0; |
---|
121 | for (int i = 0; i < x.length(); i++) { |
---|
122 | for (int j=0; j<y.length(); j++) { |
---|
123 | pom(0) = x(i); |
---|
124 | pom(1) = y(j); |
---|
125 | suma += exp(eN.evallog(pom)); |
---|
126 | } |
---|
127 | } |
---|
128 | |
---|
129 | CHECK_CLOSE(100, suma, 0.1); |
---|
130 | } |
---|