root/library/tests/stresssuite/arx_stress.cpp @ 903

Revision 766, 2.0 kB (checked in by mido, 15 years ago)

abstract methods restored wherever they are meaningful
macros NOT_IMPLEMENTED and NOT_IMPLEMENTED_VOID defined to make sources shorter
emix::set_parameters and mmix::set_parameters removed, corresponding acces methods created and the corresponding validate methods improved appropriately
some compilator warnings were avoided
and also a few other things cleaned up

Line 
1/*!
2\file
3\brief Test of basic elements of the ARX class
4
5See file \ref arx for mathematical background.
6
7This class tests functions ARX::bayes (Bayes rule) ARX::structure_est and ARX::predictor_student
8
9Untested functions: none.
10
11 */
12
13#include "estim/arx.h"
14#include "../mat_checks.h"
15
16using namespace bdm;
17
18TEST ( arx_stress ) {
19        // Setup model
20        vec th ( "0.8 -0.3 0.4 0.01" );
21        int ord = th.length(); //auxiliary variable
22        double sqr = 0.1;
23
24        //Test constructor
25        mat V0 = 0.00001 * eye ( ord + 1 );
26        V0 ( 0 ) = 1; //
27        double nu0 = ord + 5.0;
28
29        ARX Ar;
30        Ar.set_statistics ( 1, V0, nu0 );               // Estimator
31        Ar.set_constant ( false );
32        Ar.validate();
33        const epdf& f_thr = Ar.posterior();          // refrence to posterior of the estimator
34
35        //Test estimation
36        int ndat = 100;                 // number of data records
37        vec Yt ( ndat );                // Store generated data
38        Yt.set_subvector ( 0, randn ( ord ) ); //initial values
39        vec rgr ( ord );                // regressor
40
41        //print moments of the prior distribution
42        cout << "prior mean: " << f_thr.mean() << endl;
43        cout << "prior variance: " << f_thr.variance() << endl;
44
45        // cycle over time:
46        for ( int t = ord; t < ndat; t++ ) {
47                //Generate regressor
48                for ( int j = 0; j < ( ord ); j++ ) {
49                        rgr ( j ) = Yt ( t - j - 1 );
50                }
51                //model
52                Yt ( t ) = th * rgr + sqr * NorRNG();
53
54                Ar.bayes ( vec_1 ( Yt ( t ) ), rgr );       // Bayes rule
55
56                // Build predictor
57                mlstudent*      Pr = Ar.predictor_student ( );
58                // Test similarity of likelihoods from the Bayes rule and the predictor
59                cout << "BR log-lik: " << Ar._ll();
60                cout << " , predictor ll: " <<  Pr->evallogcond ( vec_1 ( Yt ( t ) ), rgr )  << endl;
61                delete Pr;
62        }
63        //print posterior moments
64        cout << "posterior mean: " << f_thr.mean() << endl;
65        cout << "posterior variance: " << f_thr.variance() << endl;
66
67        // Test brute-froce structure estimation
68
69        cout << "Structure estimation: " << endl;
70        cout << Ar.structure_est ( egiw ( 1, V0, nu0 ) ) << endl;
71}
Note: See TracBrowser for help on using the browser.