1 | function testKF(skipgen)
|
---|
2 | if nargin<1, skipgen=0; end
|
---|
3 |
|
---|
4 | if ~skipgen
|
---|
5 | A=[1 -0.5; 1 0];
|
---|
6 | B=[1;0.1];
|
---|
7 | C=[1 0];%; 0 1];
|
---|
8 | D=0.1;%[0.1; 0];
|
---|
9 | R=0.01;%[1 0; 0 0.1];
|
---|
10 | Q=[0.2 0 ; 0 0.2];
|
---|
11 |
|
---|
12 | sQ = chol(Q)';
|
---|
13 | sR = chol(R)';
|
---|
14 |
|
---|
15 | N =3000;
|
---|
16 | mu0 = [0;0];
|
---|
17 | P0 = 200*eye(2);
|
---|
18 |
|
---|
19 | u = zeros(1,N);
|
---|
20 | x = zeros(2,N);
|
---|
21 | y = zeros(1,N);
|
---|
22 |
|
---|
23 | x(:,1) = [10;10];
|
---|
24 | Et = sQ*randn(2,N);
|
---|
25 | Wt = sR*randn(1,N);
|
---|
26 | for i=2:N;
|
---|
27 | x(:,i) = A*x(:,i-1) + B*u(i) + Et(:,i);
|
---|
28 | y(:,i) = C*x(:,i) + D*u(i) + Wt(:,1);
|
---|
29 | end
|
---|
30 |
|
---|
31 | d=[y;u];
|
---|
32 | itsave('kalman_stress.it',d,A,B,C,D,Q,R,P0,mu0)
|
---|
33 | save testKF
|
---|
34 | else
|
---|
35 | load testKF
|
---|
36 | end
|
---|
37 | % init
|
---|
38 | mu = mu0;
|
---|
39 | P = P0;
|
---|
40 | EP = [0;0];
|
---|
41 |
|
---|
42 | Oxt = mu0;
|
---|
43 | OPt = P0;
|
---|
44 | ll =0;
|
---|
45 | oxt = mu0;
|
---|
46 | oPt = chol(P0)';
|
---|
47 | oll=0;
|
---|
48 |
|
---|
49 | Mu = zeros(2,N);
|
---|
50 | Mu_oo = zeros(2,N);
|
---|
51 |
|
---|
52 | tic;
|
---|
53 | for t=2:N
|
---|
54 | mu = A*mu + B*u(t);
|
---|
55 | P = A*P*A' + Q;
|
---|
56 |
|
---|
57 | %Data update
|
---|
58 | Ry = C*P*C' + R;
|
---|
59 | iRy = inv(Ry);
|
---|
60 | K = P*C'*iRy;
|
---|
61 | P = P- K*C*P; % P = P -KCP;
|
---|
62 | mu = mu + K*(y(:,t)-C*mu-D*u(t));
|
---|
63 | Mu(1:2,t)=mu;
|
---|
64 |
|
---|
65 | % [Oxt,OPt,ll(t)] = Kalman(Oxt,y(:,t),A,C,Q,R,OPt);
|
---|
66 | % [oxt,oPt,oll(t)] = KalmanSq(oxt,y(:,t),A,C,sQ,sR,oPt);
|
---|
67 | % MuK(1:2,t) = Oxt;
|
---|
68 | % MuS(1:2,t) = oxt;
|
---|
69 | end
|
---|
70 | exec_matlab = toc
|
---|
71 | %keyboard
|
---|
72 |
|
---|
73 | %%%%%%%% OBJECTs in MATLAB %%%%%
|
---|
74 | addpath ../../../applications/bdmtoolbox/mex/mex_classes
|
---|
75 |
|
---|
76 | oKAL=mexKalman;
|
---|
77 | oKAL.A = A;
|
---|
78 | oKAL.B = B;
|
---|
79 | oKAL.C = C;
|
---|
80 | oKAL.D = D;
|
---|
81 | oKAL.Q = Q;
|
---|
82 | oKAL.R = R;
|
---|
83 | oKAL=oKAL.validate;
|
---|
84 | oKAL.apost_pdf.mu = mu0;
|
---|
85 | oKAL.apost_pdf.R = P0;
|
---|
86 |
|
---|
87 | tic;
|
---|
88 | for t=2:N
|
---|
89 | oKAL=oKAL.bayes(y(t),u(t));
|
---|
90 | Mu_oo(1:2,t) = oKAL.apost_pdf.mu;
|
---|
91 | end
|
---|
92 | exec_matlab_oo=toc
|
---|
93 |
|
---|
94 | !./stresssuite kalman_stress
|
---|
95 | itload('kalman_stress_res.it');
|
---|
96 |
|
---|
97 | hold off
|
---|
98 | plot(x');
|
---|
99 | hold on
|
---|
100 | plot([Mu]','--'); % shift the predldmatictions
|
---|
101 | plot([Mu_oo]',':'); % shift the predldmatictions
|
---|
102 | plot(xth2','+');
|
---|
103 | plot(xthE','o');
|
---|
104 | %plot([zeros(size(xth,1),1) MuK]','d'); % shift the predictions
|
---|
105 |
|
---|
106 | exec_times
|
---|
107 | exec_matlab./exec_times
|
---|
108 | %keyboard
|
---|
109 | end
|
---|