#include "stat/exp_family.h" #include "stat/emix.h" using namespace bdm; //These lines are needed for use of cout and endl using std::cout; using std::endl; void disp ( const vec &tmu, const mat &tR, const mat &Smp ) { int N = Smp.cols(); vec Emu = Smp * ones ( N ) / N ; mat Er = ( Smp * Smp.transpose() ) / N - outer_product ( Emu, Emu ); cout << "True mu:" << tmu << endl; cout << "Emp mu:" << Emu << endl; cout << "True R:" << tR << endl; cout << "Emp R:" << Er << endl; } int main() { RNG_randomize(); RV x ( "{x }", "2" ); RV y ( "{y }", "2" ); int N = 10000; //number of samples vec mu0 = "1.5 1.7"; mat V0 ( "1.2 0.3; 0.3 5" ); ldmat R = ldmat ( V0 ); cout << "====== ENorm ====== " << endl; shared_ptr > eN = new enorm(); eN->set_parameters ( mu0, R ); mat Smp = eN->sample_m ( N ); disp ( mu0, R.to_mat(), Smp ); cout << "====== MlNorm ====== " << endl; mat I = eye ( 2 ); mlnorm ML; ML.set_parameters ( I, zeros ( 2 ), R ); Smp = ML.samplecond_m ( mu0, N ); disp ( mu0, R.to_mat(), Smp ); cout << "====== EGamma ====== " << endl; vec a = "100000,10000"; vec b = a / 10.0; shared_ptr eG = new egamma(); eG->set_parameters ( a, b ); cout << eG->evallog ( a ) << endl; Smp = eG->sample_m ( N ); vec g_mu = elem_div ( a, b ); vec g_var = elem_div ( a, pow ( b, 2.0 ) ); disp ( g_mu, diag ( g_var ), Smp ); cout << "====== MGamma ====== " << endl; shared_ptr mG = new mgamma(); double k = 10.0; mG->set_parameters ( k, mu0 ); Smp = mG->samplecond_m ( mu0, N ); disp ( mu0, pow ( mu0, 2.0 ) / k, Smp ); cout << "======= EMix ======== " << endl; shared_ptr eMix = new emix(); Array > Coms ( 2 ); Coms ( 0 ) = eG; Coms ( 1 ) = eN; eMix->set_parameters ( vec_2 ( 0.5, 0.5 ), Coms ); vec smp = eMix->sample(); Smp = eMix->sample_m ( N ); disp ( eMix->mean(), zeros ( 2 ), Smp ); cout << "======= MEpdf ======== " << endl; mepdf meMix ( eMix ); Smp = meMix.samplecond_m ( mu0, N ); disp ( eMix->mean(), zeros ( 2 ), Smp ); cout << "======= MMix ======== " << endl; mmix mMix; Array > mComs ( 2 ); // emix::set_parameters requires the first mpdf to be named mG->set_rv(x); mG->set_rvc(y); mComs ( 0 ) = mG; eN->set_mu ( vec_2 ( 0.0, 0.0 ) ); shared_ptr mEnorm = new mepdf ( eN ); mComs ( 1 ) = mEnorm; mMix.set_parameters ( vec_2 ( 0.5, 0.5 ), mComs ); Smp = mMix.samplecond_m ( mu0, N ); disp ( 0.5 * eN->mean() + 0.5 * mu0, zeros ( 2 ), Smp ); cout << "======= EProd ======== " << endl; // we have to change eG->rv to y eN->set_rv ( x ); eG->set_rv ( y ); //create array Array > A ( 2 ); A ( 0 ) = new mepdf ( eN ); A ( 1 ) = new mepdf ( eG ); mprod eP ( A ); mat epV = zeros ( 4, 4 ); epV.set_submatrix ( 0, 0, V0 ); epV.set_submatrix ( 2, 2, diag ( g_var ) ); vec v0 = vec ( 0 ); Smp = eP.samplecond ( v0, N ); disp ( concat ( eN->mean(), eG->mean() ), epV, Smp ); cout << "======= eWishart ======== " << endl; mat wM = "1.0 0.9; 0.9 1.0"; eWishartCh eW; eW.set_parameters ( wM / 100, 100 ); mat mea = zeros ( 2, 2 ); mat Ch ( 2, 2 ); for ( int i = 0; i < 100; i++ ) { Ch = eW.sample_mat(); mea += Ch.T() * Ch; } cout << mea / 100 << endl; cout << "======= rwiWishart ======== " << endl; rwiWishartCh rwW; rwW.set_parameters ( 2, 0.1, "1 1", 0.9 ); mea = zeros ( 2, 2 ); mat wMch = chol ( wM ); for ( int i = 0; i < 100; i++ ) { vec tmp = rwW.samplecond ( vec ( wMch._data(), 4 ) ); copy_vector ( 4, tmp._data(), Ch._data() ); mea += Ch.T() * Ch; } cout << mea / 100 << endl; //Exit program: return 0; }