1 | |
---|
2 | #include "stat/exp_family.h" |
---|
3 | #include "stat/emix.h" |
---|
4 | |
---|
5 | using namespace bdm; |
---|
6 | |
---|
7 | //These lines are needed for use of cout and endl |
---|
8 | using std::cout; |
---|
9 | using std::endl; |
---|
10 | |
---|
11 | void disp(const vec &tmu, const mat &tR,const mat &Smp){ |
---|
12 | int N = Smp.cols(); |
---|
13 | vec Emu = Smp*ones(N) /N ; |
---|
14 | mat Er = (Smp*Smp.transpose())/N - outer_product(Emu,Emu); |
---|
15 | cout << "True mu:" << tmu <<endl; |
---|
16 | cout << "Emp mu:" << Emu <<endl; |
---|
17 | |
---|
18 | cout << "True R:" << tR <<endl; |
---|
19 | cout << "Emp R:" << Er <<endl; |
---|
20 | } |
---|
21 | |
---|
22 | int main() { |
---|
23 | |
---|
24 | RNG_randomize(); |
---|
25 | |
---|
26 | RV x("{x }","2"); |
---|
27 | RV y("{y }","2"); |
---|
28 | int N = 10000; //number of samples |
---|
29 | vec mu0 = "1.5 1.7"; |
---|
30 | mat V0("1.2 0.3; 0.3 5"); |
---|
31 | ldmat R = ldmat(V0); |
---|
32 | |
---|
33 | cout << "====== ENorm ====== " <<endl; |
---|
34 | enorm<ldmat> eN; |
---|
35 | eN.set_parameters(mu0,R); |
---|
36 | mat Smp = eN.sample_m(N); |
---|
37 | |
---|
38 | disp(mu0,R.to_mat(),Smp); |
---|
39 | |
---|
40 | cout << "====== MlNorm ====== " <<endl; |
---|
41 | mat I = eye(2); |
---|
42 | mlnorm<ldmat> ML; |
---|
43 | ML.set_parameters(I,zeros(2),R); |
---|
44 | Smp = ML.samplecond_m(mu0,N); |
---|
45 | |
---|
46 | disp(mu0,R.to_mat(),Smp); |
---|
47 | |
---|
48 | cout << "====== EGamma ====== " <<endl; |
---|
49 | vec a = "100000,10000"; |
---|
50 | vec b = a/10.0; |
---|
51 | egamma eG; |
---|
52 | eG.set_parameters(a,b); |
---|
53 | |
---|
54 | cout << eG.evallog(a)<<endl; |
---|
55 | Smp = eG.sample_m(N); |
---|
56 | |
---|
57 | vec g_mu = elem_div(a,b); |
---|
58 | vec g_var = elem_div(a,pow(b,2.0)); |
---|
59 | disp(g_mu,diag(g_var),Smp); |
---|
60 | |
---|
61 | cout << "====== MGamma ====== " <<endl; |
---|
62 | mgamma mG; |
---|
63 | double k = 10.0; |
---|
64 | mG.set_parameters(k,mu0); |
---|
65 | |
---|
66 | Smp=mG.samplecond_m(mu0,N); |
---|
67 | disp(mu0,pow(mu0,2.0)/k,Smp); |
---|
68 | |
---|
69 | cout << "======= EMix ======== " << endl; |
---|
70 | emix eMix; |
---|
71 | Array<epdf*> Coms(2); |
---|
72 | Coms(0) = &eG; |
---|
73 | Coms(1) = &eN; |
---|
74 | |
---|
75 | eMix.set_parameters(vec_2(0.5,0.5), Coms); |
---|
76 | vec smp = eMix.sample(); |
---|
77 | Smp = eMix.sample_m(N); |
---|
78 | disp(eMix.mean(),zeros(2),Smp); |
---|
79 | |
---|
80 | cout << "======= MEpdf ======== " << endl; |
---|
81 | mepdf meMix(&eMix); |
---|
82 | |
---|
83 | Smp = meMix.samplecond_m(mu0,N); |
---|
84 | disp(eMix.mean(),zeros(2),Smp); |
---|
85 | |
---|
86 | cout << "======= MMix ======== " << endl; |
---|
87 | mmix mMix; |
---|
88 | Array<mpdf*> mComs(2); |
---|
89 | mComs(0) = &mG; |
---|
90 | eN.set_mu(vec_2(0.0,0.0)); |
---|
91 | mepdf mEnorm(&eN); |
---|
92 | mComs(1) = &mEnorm; |
---|
93 | mMix.set_parameters(vec_2(0.5,0.5),mComs); |
---|
94 | |
---|
95 | Smp = mMix.samplecond_m(mu0,N); |
---|
96 | disp(mMix._epdf().mean(),zeros(2),Smp); |
---|
97 | |
---|
98 | cout << "======= EProd ======== " << endl; |
---|
99 | // we have to change eG.rv to y |
---|
100 | eN.set_rv(x); |
---|
101 | eG.set_rv(y); |
---|
102 | //create array |
---|
103 | Array<mpdf*> A(2); |
---|
104 | mepdf meN(&eN); |
---|
105 | mepdf meG(&eG); |
---|
106 | A(0) = &meN; |
---|
107 | A(1) = &meG; |
---|
108 | |
---|
109 | mprod eP(A); |
---|
110 | mat epV=zeros(4,4); |
---|
111 | epV.set_submatrix(0,0,V0); |
---|
112 | epV.set_submatrix(2,2,diag(g_var)); |
---|
113 | |
---|
114 | vec v0=vec(0); |
---|
115 | Smp = eP.samplecond(v0,N); |
---|
116 | disp(concat(eN.mean(),eG.mean()), epV,Smp); |
---|
117 | |
---|
118 | cout << "======= eWishart ======== " << endl; |
---|
119 | mat wM="1.0 0.9; 0.9 1.0"; |
---|
120 | eWishartCh eW; eW.set_parameters(wM/100,100); |
---|
121 | mat mea=zeros(2,2); |
---|
122 | mat Ch(2,2); |
---|
123 | for (int i=0;i<100;i++){Ch=eW.sample_mat(); mea+=Ch.T()*Ch;} |
---|
124 | cout << mea /100 <<endl; |
---|
125 | |
---|
126 | cout << "======= rwiWishart ======== " << endl; |
---|
127 | rwiWishartCh rwW; rwW.set_parameters(2,0.1,"1 1",0.9); |
---|
128 | mea=zeros(2,2); |
---|
129 | mat wMch=chol(wM); |
---|
130 | for (int i=0;i<100;i++){ |
---|
131 | vec tmp=rwW.samplecond(vec(wMch._data(),4)); |
---|
132 | copy_vector(4,tmp._data(), Ch._data()); |
---|
133 | mea+=Ch.T()*Ch; |
---|
134 | } |
---|
135 | cout << mea /100 <<endl; |
---|
136 | //Exit program: |
---|
137 | return 0; |
---|
138 | |
---|
139 | } |
---|