1 | |
---|
2 | #include <estim/kalman.h> |
---|
3 | |
---|
4 | using namespace bdm; |
---|
5 | |
---|
6 | //These lines are needed for use of cout and endl |
---|
7 | using std::cout; |
---|
8 | using std::endl; |
---|
9 | |
---|
10 | int main() { |
---|
11 | // Kalman filter |
---|
12 | mat A, B, C, D, R, Q, P0; |
---|
13 | vec mu0; |
---|
14 | mat Mu0;; |
---|
15 | // input from Matlab |
---|
16 | it_file fin ( "testKF.it" ); |
---|
17 | |
---|
18 | mat Dt; |
---|
19 | int Ndat; |
---|
20 | |
---|
21 | bool xxx = fin.seek ( "d" ); |
---|
22 | if ( !xxx ) { |
---|
23 | bdm_error ( "testKF.it not found" ); |
---|
24 | } |
---|
25 | fin >> Dt; |
---|
26 | fin.seek ( "A" ); |
---|
27 | fin >> A; |
---|
28 | fin.seek ( "B" ); |
---|
29 | fin >> B; |
---|
30 | fin.seek ( "C" ); |
---|
31 | fin >> C; |
---|
32 | fin.seek ( "D" ); |
---|
33 | fin >> D; |
---|
34 | fin.seek ( "R" ); |
---|
35 | fin >> R; |
---|
36 | fin.seek ( "Q" ); |
---|
37 | fin >> Q; |
---|
38 | fin.seek ( "P0" ); |
---|
39 | fin >> P0; |
---|
40 | fin.seek ( "mu0" ); |
---|
41 | fin >> Mu0; |
---|
42 | mu0 = Mu0.get_col ( 0 ); |
---|
43 | |
---|
44 | Ndat = 10;//Dt.cols(); |
---|
45 | int dimx = A.rows(); |
---|
46 | |
---|
47 | // Prepare for Kalman filters in BDM: |
---|
48 | RV rx ( "{x }", vec_1 ( A.cols() ) ); |
---|
49 | RV ru ( "{u }", vec_1 ( B.cols() ) ); |
---|
50 | RV ry ( "{y }", vec_1 ( C.rows() ) ); |
---|
51 | |
---|
52 | // // LDMAT |
---|
53 | // Kalman<ldmat> KF(rx,ry,ru); |
---|
54 | // KF.set_parameters(A,B,C,D,ldmat(R),ldmat(Q)); |
---|
55 | // KF.set_est(mu0,ldmat(P0) ); |
---|
56 | // epdf& KFep = KF.posterior(); |
---|
57 | // mat Xt(2,Ndat); |
---|
58 | // Xt.set_col( 0,KFep.mean() ); |
---|
59 | |
---|
60 | //Chol |
---|
61 | KalmanCh KF; |
---|
62 | KF.set_parameters ( A, B, C, D, chmat ( R ), chmat ( Q ) ); |
---|
63 | KF.set_statistics ( mu0, chmat ( P0 ) ); //prediction! |
---|
64 | const epdf& KFep = KF.posterior(); |
---|
65 | mat Xt ( dimx, Ndat ); |
---|
66 | Xt.set_col ( 0, KFep.mean() ); |
---|
67 | |
---|
68 | // FULL |
---|
69 | KalmanFull KF2; |
---|
70 | KF2.set_parameters( A, B, C, D, R, Q); |
---|
71 | KF2.set_statistics( mu0, P0 ); |
---|
72 | mat Xt2 ( dimx, Ndat ); |
---|
73 | Xt2.set_col ( 0, mu0 ); |
---|
74 | |
---|
75 | |
---|
76 | // EKF |
---|
77 | shared_ptr<bilinfn> fxu = new bilinfn ( A, B ); |
---|
78 | shared_ptr<bilinfn> hxu = new bilinfn ( C, D ); |
---|
79 | EKFCh KFE; |
---|
80 | KFE.set_parameters ( fxu, hxu, Q, R ); |
---|
81 | KFE.set_statistics ( mu0, chmat ( P0 ) ); |
---|
82 | const epdf& KFEep = KFE.posterior(); |
---|
83 | mat XtE ( dimx, Ndat ); |
---|
84 | XtE.set_col ( 0, KFEep.mean() ); |
---|
85 | |
---|
86 | //test performance of each filter |
---|
87 | Real_Timer tt; |
---|
88 | vec exec_times ( 3 ); // KF, KF2, KFE |
---|
89 | |
---|
90 | tt.tic(); |
---|
91 | for ( int t = 1; t < Ndat; t++ ) { |
---|
92 | KF.bayes ( Dt.get_col ( t ) ); |
---|
93 | Xt.set_col ( t, KFep.mean() ); |
---|
94 | } |
---|
95 | exec_times ( 0 ) = tt.toc(); |
---|
96 | |
---|
97 | tt.tic(); |
---|
98 | for ( int t = 1; t < Ndat; t++ ) { |
---|
99 | KF2.bayes ( Dt.get_col ( t ) ); |
---|
100 | Xt2.set_col ( t, KF2.posterior().mean() ); |
---|
101 | } |
---|
102 | exec_times ( 1 ) = tt.toc(); |
---|
103 | |
---|
104 | tt.tic(); |
---|
105 | for ( int t = 1; t < Ndat; t++ ) { |
---|
106 | KFE.bayes ( Dt.get_col ( t ) ); |
---|
107 | XtE.set_col ( t, KFEep.mean() ); |
---|
108 | } |
---|
109 | exec_times ( 2 ) = tt.toc(); |
---|
110 | |
---|
111 | |
---|
112 | it_file fou ( "testKF_res.it" ); |
---|
113 | fou << Name ( "xth" ) << Xt; |
---|
114 | fou << Name ( "xth2" ) << Xt2; |
---|
115 | fou << Name ( "xthE" ) << XtE; |
---|
116 | fou << Name ( "exec_times" ) << exec_times; |
---|
117 | //Exit program: |
---|
118 | return 0; |
---|
119 | |
---|
120 | } |
---|