| 1 | function [MAPstr, lhs, statistics] = facstr(Fac, Fac0, belief, nbest, ... |
|---|
| 2 | max_nrep, uchns, lambda, order_k) |
|---|
| 3 | % factor-structure estimation |
|---|
| 4 | % |
|---|
| 5 | % [optstr, lhs] = facstr(Fac, Fac0, belief, nbest, max_nrep, uchns, lambda, order_k) |
|---|
| 6 | % [optstr, lhs] = facstr(Fac, Fac0, belief, nbest, max_nrep, uchns, lambda) order_k=2 |
|---|
| 7 | % [optstr, lhs] = facstr(Fac, Fac0, belief, nbest, max_nrep) uchns) lambda = 0.9 |
|---|
| 8 | % [optstr, lhs] = facstr(Fac, Fac0, belief, nbest, max_nrep) uchns = [] |
|---|
| 9 | % [optstr, lhs] = facstr(Fac, Fac0, belief, nbest) max_nrep = 100 !!!!! change this to 500 |
|---|
| 10 | % [optstr, lhs] = facstr(Fac, Fac0, belief) nbest = 1 |
|---|
| 11 | % [optstr, lhs] = facstr(Fac, Fac0) belief = 2 |
|---|
| 12 | % defaults generated by function defaults with the option 's' |
|---|
| 13 | % |
|---|
| 14 | % optstr: maximum a posteriori probability estimate of factor structure |
|---|
| 15 | %%% lhs : cell vector of the best regressors -- not true now |
|---|
| 16 | %%% {1} values |
|---|
| 17 | %%% {2} indicators |
|---|
| 18 | % |
|---|
| 19 | % Fac : factor type = 1 |
|---|
| 20 | % Fac0 : initial factor type = 1 |
|---|
| 21 | % belief : user's belief on maximum structure items |
|---|
| 22 | % (1 items must be present, 2 items are probably present |
|---|
| 23 | % 4 items must not be present, 3 items are probably not present) |
|---|
| 24 | % nbest : how many "best" regressors are maintained |
|---|
| 25 | % max_nrep : maximal number of random starts in search for the best |
|---|
| 26 | % structure |
|---|
| 27 | % uchns : list of input channels - if specified, the resulting structure |
|---|
| 28 | % contains at least one of inputs (suboptimal solution) |
|---|
| 29 | % Note: channel description can be used instead of "uchns" |
|---|
| 30 | % lambda : stooping rule threshold |
|---|
| 31 | % order_k : order of k |
|---|
| 32 | % |
|---|
| 33 | % Design : L. Tesar. Interface Based on P. Nedoma's previous version of facstrid. |
|---|
| 34 | % Updated : 14.4.2003 - 10.9.2003, MK July 2004 |
|---|
| 35 | % Project : post-ProDaCTool |
|---|
| 36 | % Reference: straux1 |
|---|
| 37 | |
|---|
| 38 | % Remark: straux1 uses (or links if it is mex) dydrs and gammaln |
|---|
| 39 | |
|---|
| 40 | %%%% begin patch MK: tests shifted |
|---|
| 41 | [def_belief, def_nbest, def_nrep] = defaults('s'); |
|---|
| 42 | |
|---|
| 43 | if nargin<8, order_k = 2; end; % LT added stopping rule |
|---|
| 44 | if nargin<7, lambda = 0.9; end; % LT added stopping rule |
|---|
| 45 | if nargin<6, uchns = []; |
|---|
| 46 | elseif iscell(uchns) |
|---|
| 47 | uu = []; |
|---|
| 48 | ii = getflds(uchns, 'raction'); |
|---|
| 49 | for i=1:length(ii), |
|---|
| 50 | if ~isempty(uchns{i}.raction), uu = [uu, uchns{i}.chn]; end |
|---|
| 51 | end |
|---|
| 52 | uchns = uu; |
|---|
| 53 | end |
|---|
| 54 | if nargin<5, max_nrep = def_nrep; end; |
|---|
| 55 | if nargin<4, nbest = def_nbest; end; |
|---|
| 56 | if nargin<3, belief = def_belief; end; |
|---|
| 57 | if nargin<2, error('facstr needs at least two input parameters'); end; |
|---|
| 58 | |
|---|
| 59 | |
|---|
| 60 | %%%fprintf('FACSTR nruns=%i\n',max_nrep); |
|---|
| 61 | if ~streq(Fac.str,Fac0.str) |
|---|
| 62 | error('structures of prior and posterior factors in facstrid should equal') |
|---|
| 63 | end |
|---|
| 64 | %%% end patch MK |
|---|
| 65 | |
|---|
| 66 | maxstr = Fac.str; % structures searched as subselections |
|---|
| 67 | % of the current factor structure |
|---|
| 68 | if length(belief)<=1 % belief can be empty |
|---|
| 69 | if length(belief)==0 |
|---|
| 70 | belief = def_belief; |
|---|
| 71 | end |
|---|
| 72 | belief = belief + zeros(1,size(maxstr,2)); |
|---|
| 73 | end |
|---|
| 74 | |
|---|
| 75 | npsi = length(belief); % lenght of regressor |
|---|
| 76 | |
|---|
| 77 | %%%% START OF %%%%%%%%%%% LT structure estimation code %%%%%%%%% |
|---|
| 78 | [L, D] = ld2ld(Fac.LD); |
|---|
| 79 | nu = Fac.dfm+2; % This is general relation between \nu and dfm |
|---|
| 80 | [L0, D0] = ld2ld(Fac0.LD); |
|---|
| 81 | nu0 = Fac0.dfm+2; |
|---|
| 82 | d = diag(D); |
|---|
| 83 | d0 = diag(D0); |
|---|
| 84 | |
|---|
| 85 | [optstr1, rgrsout, statistics] = straux1(L, d, nu, L0, d0, nu0, ... |
|---|
| 86 | belief,nbest,max_nrep, lambda, order_k); |
|---|
| 87 | |
|---|
| 88 | |
|---|
| 89 | % result is made as sub-selection of current Factor structure |
|---|
| 90 | maxstr = Fac.str; |
|---|
| 91 | % optstr = maxstr(:,optstr1-1); % probably nobody interested in this now |
|---|
| 92 | |
|---|
| 93 | lhs{1} = [rgrsout.loglik]; |
|---|
| 94 | ilh = zeros(length(maxstr),length(rgrsout)); |
|---|
| 95 | for f=1:length(rgrsout); |
|---|
| 96 | ilh(rgrsout(f).strRgr-1,f) = 1; |
|---|
| 97 | end; |
|---|
| 98 | lhs{2} = ilh; |
|---|
| 99 | %%%% END OF %%%%%%%%%%%%% LT structure estimation code %%%%%%%%%%% |
|---|
| 100 | |
|---|
| 101 | |
|---|
| 102 | % build MAPstr |
|---|
| 103 | if maxstr(1,npsi)==0, |
|---|
| 104 | iabs=1; |
|---|
| 105 | else iabs=0; |
|---|
| 106 | end |
|---|
| 107 | ii=find(ilh(1:npsi-iabs,1)==1); |
|---|
| 108 | if length(ii)~=0, |
|---|
| 109 | MAPstr=maxstr(:,ii); |
|---|
| 110 | if (iabs==1 & ilh(npsi,1)==1), MAPstr=[MAPstr [0;1]]; end |
|---|
| 111 | elseif iabs==1, MAPstr = [0; 1]; |
|---|
| 112 | else MAPstr=[]; |
|---|
| 113 | end |
|---|
| 114 | |
|---|
| 115 | % patch: let the structure contains inputs |
|---|
| 116 | if ~isempty(uchns) |
|---|
| 117 | [MAPstr, lhs, flag] = checkinp(Fac.str, uchns, lhs); |
|---|
| 118 | end |
|---|
| 119 | |
|---|
| 120 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|---|
| 121 | function [MAPstr, lhs, flag] = checkinp(str, uchns, lhs) |
|---|
| 122 | % cut best regressors not containing inputs |
|---|
| 123 | % [MAPstr, lhs, flag] = checkinp(maxstr, uchns, lhs) |
|---|
| 124 | % |
|---|
| 125 | % maxstr: richest factor structure |
|---|
| 126 | % uchns : vector of input channels |
|---|
| 127 | % lhs : updated information from facstrid |
|---|
| 128 | % flag : 0 - no inputs |
|---|
| 129 | % n - 1st ok regressor |
|---|
| 130 | % |
|---|
| 131 | % Design : P. Nedoma |
|---|
| 132 | % Updated: June 2003 |
|---|
| 133 | % Project: ProDaCTools remake |
|---|
| 134 | |
|---|
| 135 | vlh = lhs{1}; % value of log. likelihood |
|---|
| 136 | ilh = lhs{2}'; % the best MAP estimates |
|---|
| 137 | npsi = size(ilh,1); |
|---|
| 138 | |
|---|
| 139 | % compute MAPstr, set flag |
|---|
| 140 | ii = find( ilh(1,:) ==1); |
|---|
| 141 | MAPstr = str(:, ii); |
|---|
| 142 | flag = 0; |
|---|
| 143 | |
|---|
| 144 | nuchn = length(uchns); % number of inputs |
|---|
| 145 | iall = str(1,:); |
|---|
| 146 | ii = 0*iall; |
|---|
| 147 | |
|---|
| 148 | % build array of indices to input channels in factor structure |
|---|
| 149 | for i=1:nuchn |
|---|
| 150 | uchn = uchns(i); |
|---|
| 151 | jj = find(uchn == iall); |
|---|
| 152 | if ~isempty(jj), ii(jj) = 0*ii(jj) + 1; end |
|---|
| 153 | end |
|---|
| 154 | |
|---|
| 155 | if all(ii), return; end % no inputs |
|---|
| 156 | ii = find(ii==1); % indices |
|---|
| 157 | |
|---|
| 158 | % find first row containing inputs |
|---|
| 159 | ok = 0; |
|---|
| 160 | for i=1:npsi |
|---|
| 161 | ind = ilh(i,ii); |
|---|
| 162 | if any(ind), ok = 1; break; end |
|---|
| 163 | end |
|---|
| 164 | if ~ok, return; end |
|---|
| 165 | |
|---|
| 166 | % cut beginning |
|---|
| 167 | if i>1 |
|---|
| 168 | ilh = ilh(i:end, :); |
|---|
| 169 | vlh = vlh(i:end); |
|---|
| 170 | flag = i; |
|---|
| 171 | else |
|---|
| 172 | flag = 1; return; |
|---|
| 173 | end |
|---|
| 174 | npsi = size(ilh,1); |
|---|
| 175 | |
|---|
| 176 | % build MAPstr |
|---|
| 177 | ii = find( ilh(1,:) ==1); |
|---|
| 178 | MAPstr = str(:, ii); |
|---|
| 179 | |
|---|
| 180 | % build lhs |
|---|
| 181 | lhs{1} = vlh; |
|---|
| 182 | lhs{2} = ilh'; |
|---|