Revision 579, 1.4 kB
(checked in by smidl, 15 years ago)
|
Implementation of mixtools randun function
|
Line | |
---|
1 | function r=randun(m,n) |
---|
2 | %RANDUN generate sample from Uniform distribution |
---|
3 | % |
---|
4 | % r = randun |
---|
5 | % r = randun(m) |
---|
6 | % r = randun(m,n) |
---|
7 | % |
---|
8 | % r : generated sample |
---|
9 | % SEED : global variable SEED |
---|
10 | % m : rows |
---|
11 | % n : columns |
---|
12 | % |
---|
13 | % Design : J. Andrysek |
---|
14 | % Project : BadDyr |
---|
15 | % Comments: used to generate exactly the same numbers in .m and .dll |
---|
16 | % versions |
---|
17 | % |
---|
18 | % Patched by Ludvik Tesar to output matrix instead of scalar |
---|
19 | |
---|
20 | |
---|
21 | global SEED; |
---|
22 | if(isempty(SEED)) SEED = 1111111; end; |
---|
23 | %SEED = randn('seed'); |
---|
24 | |
---|
25 | global RANDUN_COUNTER; |
---|
26 | if(isempty(RANDUN_COUNTER)) RANDUN_COUNTER = 0; end; |
---|
27 | |
---|
28 | |
---|
29 | if ~exist('m','var'); m = 1; end; |
---|
30 | if ~exist('n','var'); n = 1; end; |
---|
31 | |
---|
32 | r = zeros(m,n); |
---|
33 | |
---|
34 | for i=1:(m*n); |
---|
35 | |
---|
36 | % Ahrens linear congruential pseudo-random generator with A=663608941 B=0 M=2^32 |
---|
37 | % A = 663608941; |
---|
38 | % M = 4294967296; |
---|
39 | % SEED = soucinek(A,SEED); |
---|
40 | % r(i) = SEED/M; |
---|
41 | % replaced by: |
---|
42 | |
---|
43 | % Park-Miller linear congruential pseudo-random generator with A=16807 B=0 M=2^31-1 |
---|
44 | % (it spans all 2^31-1 numbers and has good statistical properties) |
---|
45 | A = 16807; |
---|
46 | M = 2147483647; |
---|
47 | SEED = mod(A*SEED,M); |
---|
48 | r(i) = SEED/M; |
---|
49 | end; |
---|
50 | |
---|
51 | %randn('seed',SEED); |
---|
52 | |
---|
53 | RANDUN_COUNTER = RANDUN_COUNTER+m*n; |
---|
54 | |
---|
55 | function r=soucinek(a,b); |
---|
56 | z=2^16; |
---|
57 | ha(1)=floor(a/z); |
---|
58 | ha(2)=mod(a,z); |
---|
59 | |
---|
60 | hb(1)=floor(b/z); |
---|
61 | hb(2)=mod(b,z); |
---|
62 | |
---|
63 | c=ha(2)*hb(2); |
---|
64 | res(2)=mod(c,z); |
---|
65 | res(1)=mod(floor(c/z)+hb(2)*ha(1)+hb(1)*ha(2),z); |
---|
66 | |
---|
67 | r=res(1)*z+res(2); |
---|
68 | |
---|