1 | function [strout, rgrsout, statistics] = straux1(L, d, nu, L0, d0, nu0, belief, nbest, max_nrep, lambda, order_k); |
---|
2 | % structure estimation based on LD decomposition |
---|
3 | % |
---|
4 | % This m/mex file is internally called by facstr, IT IS NOT TO BE CALLED |
---|
5 | % BY USER!! Documentation guiven for reference. |
---|
6 | % |
---|
7 | % |
---|
8 | % [strout, rgrsout, statistics] = straux1(L, d, nu, L0, d0, nu0, belief, nbest, max_nrep, lambda, order_k); |
---|
9 | % |
---|
10 | % L : Actual LD decomposition based on data |
---|
11 | % d : Actual LD decomposition based on data |
---|
12 | % nu : Actual data amount |
---|
13 | % L0 : prior information |
---|
14 | % d0 : prior information |
---|
15 | % nu0 : prior data amount |
---|
16 | % belief: user's belief on maximum structure items |
---|
17 | % (1 items must be present, 2 items are probably present |
---|
18 | % 4 items must not be present, 3 items are probably not present) |
---|
19 | % 2 and 3 is the same |
---|
20 | % nbest : how many "best" regressors are maintained |
---|
21 | % strout : structure estimated (of the regressor, richest is 2:length(d) |
---|
22 | % max_nrep : maximal number of random starts in search for the best |
---|
23 | % structure |
---|
24 | % lambda : stooping rule threshold |
---|
25 | % order_k : order of k |
---|
26 | % |
---|
27 | % Design : L. Tesar |
---|
28 | % Updated : Feb-Apr 2003 |
---|
29 | % Project : post-ProDaCTool |
---|
30 | % References: (only local inline functions) |
---|
31 | % |
---|
32 | % Todo: in add_new, we need to implement structure comparison, instead of |
---|
33 | % loglikelihood comparison: ~any(logliks == new.loglik) |
---|
34 | |
---|
35 | % randun seed stuff: |
---|
36 | %global SEED |
---|
37 | %SEED = randn('seed'); |
---|
38 | |
---|
39 | % Argument's checking: |
---|
40 | if nargin<8; |
---|
41 | if nargout>=2; |
---|
42 | nbest = 2; |
---|
43 | else |
---|
44 | % If we don't need the second parameter it is better to avoid |
---|
45 | % calculating it at all, because it is very costly (5x slowdown). |
---|
46 | nbest = 1; |
---|
47 | end; |
---|
48 | end; |
---|
49 | |
---|
50 | if nargin< 6, error('Incorrect number of input parameters in straux1'); end; |
---|
51 | if nargin< 7, belief = []; end; % Don't belive anybody. |
---|
52 | if nargin< 9, max_nrep = 3; end; |
---|
53 | if nargin<10, lambda = 0.75; end; |
---|
54 | if nargin<11, order_k = 2; end; |
---|
55 | % Arguments were just checked. |
---|
56 | |
---|
57 | n_data = length(d); |
---|
58 | |
---|
59 | belief_out = find(belief==4)+1; % we are avoiding to put this into regressor |
---|
60 | belief_in = find(belief==1)+1; % we are instantly keeping this in regressor |
---|
61 | |
---|
62 | full.d0 = d0; |
---|
63 | full.nu0 = nu0; |
---|
64 | full.L0 = L0; |
---|
65 | full.L = L; |
---|
66 | full.d = d; |
---|
67 | full.nu = nu; |
---|
68 | full.strL = 1:n_data; % Current structure of L and d |
---|
69 | full.strRgr = 2:n_data; % Structure elements currently inside regressor (after regressand) |
---|
70 | full.strMis = []; % structure elements, that are currently outside regressor (before regressand) |
---|
71 | full.posit1 = 1; % regressand position |
---|
72 | full.nbits = floor(log2(bitmax))-1; % number of bits available in double |
---|
73 | full.bitstr = str_bitset(zeros(1,floor(n_data/full.nbits)+1),full.strRgr,full.nbits); |
---|
74 | full.loglik = seloglik1(full); % loglikelihood |
---|
75 | |
---|
76 | % construct full and empty structure |
---|
77 | full = sestrremove(full,belief_out); |
---|
78 | empty = sestrremove(full,setdiff(full.strRgr,belief_in)); |
---|
79 | |
---|
80 | % stopping rule calculation: |
---|
81 | local_max = []; |
---|
82 | muto = 0; |
---|
83 | |
---|
84 | % statistics: |
---|
85 | cputime0 = cputime; |
---|
86 | if nargout>=3; |
---|
87 | mutos = zeros(1,max_nrep+2); |
---|
88 | maxmutos = zeros(1,max_nrep+2); |
---|
89 | end; |
---|
90 | % ---------------------- |
---|
91 | |
---|
92 | % For stopping-rule calculation |
---|
93 | %so = 2^(n_data -1-length(belief_in)- length(belief_out)); % do we use this ? |
---|
94 | % ---------------------- |
---|
95 | |
---|
96 | all_str = 1:n_data; |
---|
97 | |
---|
98 | global_best = full; |
---|
99 | |
---|
100 | % MAIN LOOP is here. |
---|
101 | for n_start = -1:max_nrep; |
---|
102 | to = n_start+2; |
---|
103 | |
---|
104 | if n_start == -1; |
---|
105 | % start from the full structure |
---|
106 | last = full; |
---|
107 | elseif n_start == 0; |
---|
108 | % start from the empty structure |
---|
109 | last = empty; |
---|
110 | else |
---|
111 | % start from random structure |
---|
112 | last_str = find([ 0 floor(2*randun(1,n_data-1))]); % this creates random vector consisting of indexes, and sorted |
---|
113 | last = sestrremove(full,setdiff(all_str,[1 last_str empty.strRgr])); |
---|
114 | end; |
---|
115 | |
---|
116 | % DEBUGging print: |
---|
117 | %fprintf('STRUCTURE generated in loop %2i was %s\n', n_start, strPrintstr(last)); |
---|
118 | |
---|
119 | % The loop is repeated until likelihood stops growing (break condition |
---|
120 | % used at the end; |
---|
121 | while 1; |
---|
122 | |
---|
123 | % This structure is going to hold the best elements |
---|
124 | best = last; |
---|
125 | % Nesting by removing elements (enpoorment) |
---|
126 | for removed_item = setdiff(last.strRgr,belief_in); |
---|
127 | new = sestrremove(last,removed_item); |
---|
128 | if nbest>1; |
---|
129 | global_best = add_new(global_best,new,nbest); |
---|
130 | end; |
---|
131 | if new.loglik>best.loglik; |
---|
132 | best = new; |
---|
133 | end; |
---|
134 | end; |
---|
135 | % Nesting by adding elements (enrichment) |
---|
136 | for added_item = setdiff(last.strMis,belief_out); |
---|
137 | new = sestrinsert(last,added_item); |
---|
138 | if nbest>1; |
---|
139 | global_best = add_new(global_best,new,nbest); |
---|
140 | end; |
---|
141 | if new.loglik>best.loglik; |
---|
142 | best = new; |
---|
143 | end; |
---|
144 | end; |
---|
145 | |
---|
146 | % Break condition if likelihood does not change. |
---|
147 | if best.loglik <= last.loglik; |
---|
148 | break; |
---|
149 | else |
---|
150 | % Making best structure last structure. |
---|
151 | last = best; |
---|
152 | end; |
---|
153 | |
---|
154 | end; |
---|
155 | |
---|
156 | % DEBUGging print: |
---|
157 | %fprintf('STRUCTURE found (local maxima) in loop %2i was %s randun_seed=%11lu randun_counter=%4lu\n', n_start, strPrintstr(best), randn('seed'), RANDUN_COUNTER); |
---|
158 | |
---|
159 | % Collecting of the best structure in case we don't need the second parameter |
---|
160 | if nbest<=1; |
---|
161 | if best.loglik>global_best.loglik; |
---|
162 | global_best = best; |
---|
163 | end; |
---|
164 | end; |
---|
165 | |
---|
166 | % uniqueness of the structure found |
---|
167 | if ~ismember(best.bitstr,local_max,'rows'); |
---|
168 | local_max = [local_max ; best.bitstr]; |
---|
169 | muto = muto + 1; |
---|
170 | end; |
---|
171 | |
---|
172 | % stopping rule: |
---|
173 | maxmuto = (to-order_k-1)/lambda-to+1; |
---|
174 | if to>2; |
---|
175 | if maxmuto>=muto; |
---|
176 | % fprintf('*'); |
---|
177 | break; |
---|
178 | end; |
---|
179 | end; |
---|
180 | |
---|
181 | % do statistics if necessary: |
---|
182 | if nargout>=3; |
---|
183 | mutos(to) = muto; |
---|
184 | maxmutos(to) = maxmuto; |
---|
185 | end; |
---|
186 | end; |
---|
187 | |
---|
188 | % Aftermath: The best structure was in: global_best |
---|
189 | |
---|
190 | % Updating loglikelihoods: we have to add the constant stuff |
---|
191 | for f=1:length(global_best); |
---|
192 | global_best(f).loglik = global_best(f).loglik + seloglik2(global_best(f)); |
---|
193 | end; |
---|
194 | |
---|
195 | % Making first output parameter: |
---|
196 | [lik i] = max([global_best.loglik]); |
---|
197 | best = global_best(i); |
---|
198 | strout = best.strRgr; |
---|
199 | |
---|
200 | % Making the second output parameter |
---|
201 | [lik i] = sort([global_best.loglik]); |
---|
202 | rgrsout = global_best(i(length(i):-1:1)); |
---|
203 | |
---|
204 | if (nargout>=3); |
---|
205 | statistics.allstrs = 2^(n_data -1-length(belief_in) - length(belief_out)); |
---|
206 | statistics.nrand = to-2; |
---|
207 | statistics.unique = muto; |
---|
208 | statistics.to = to; |
---|
209 | statistics.cputime_seconds = cputime - cputime0; |
---|
210 | statistics.itemspeed = statistics.to / statistics.cputime_seconds; |
---|
211 | statistics.muto = muto; |
---|
212 | statistics.mutos = mutos; |
---|
213 | statistics.maxmutos = maxmutos; |
---|
214 | end; |
---|
215 | |
---|
216 | % randun seed stuff: |
---|
217 | %randn('seed',SEED); |
---|
218 | |
---|
219 | % --------------------- END of MAIN program -------------------- |
---|
220 | |
---|
221 | % This is needed for bitstr manipulations |
---|
222 | function out = str_bitset(in,ns,nbits) |
---|
223 | out = in; |
---|
224 | for n = ns; |
---|
225 | index = 1+floor((n-2)/nbits); |
---|
226 | bitindex = 1+rem(n-2,nbits); |
---|
227 | out(index) = bitset(out(index),bitindex); |
---|
228 | end; |
---|
229 | function out = str_bitres(in,ns,nbits) |
---|
230 | out = in; |
---|
231 | for n = ns; |
---|
232 | index = 1+floor((n-2)/nbits); |
---|
233 | bitindex = 1+rem(n-2,nbits); |
---|
234 | mask = bitset(0,bitindex); |
---|
235 | out(index) = bitxor(bitor(out(index),mask),mask); |
---|
236 | end; |
---|
237 | |
---|
238 | function out = strPrintstr(in) |
---|
239 | out = '0'; |
---|
240 | nbits = in.nbits; |
---|
241 | for f = 2:length(in.d0); |
---|
242 | index = 1+floor((f-2)/nbits); |
---|
243 | bitindex = 1+rem(f-2,nbits); |
---|
244 | if bitget(in.bitstr(index),bitindex); |
---|
245 | out(f) = '1'; |
---|
246 | else; |
---|
247 | out(f) = '0'; |
---|
248 | end; |
---|
249 | end; |
---|
250 | |
---|
251 | function global_best_out = add_new(global_best,new,nbest) |
---|
252 | % Eventually add to global best, but do not go over nbest values |
---|
253 | % Also avoids repeating things, which makes this function awfully slow |
---|
254 | if length(global_best)>=nbest; |
---|
255 | logliks = [global_best.loglik]; |
---|
256 | [loglik i] = min(logliks); |
---|
257 | global_best_out = global_best; |
---|
258 | if loglik<new.loglik; |
---|
259 | % if ~any(logliks == new.loglik); |
---|
260 | addit=1; |
---|
261 | for f = [global_best.bitstr]; |
---|
262 | if f == new.bitstr; |
---|
263 | addit = 0; |
---|
264 | break; |
---|
265 | end; |
---|
266 | end; |
---|
267 | if addit; |
---|
268 | global_best_out(i) = new; |
---|
269 | % DEBUGging print: |
---|
270 | % fprintf('ADDED structure, add_new: %s, loglik=%g\n', strPrintstr(new), new.loglik); |
---|
271 | end; |
---|
272 | end; |
---|
273 | else; |
---|
274 | global_best_out = [global_best new]; |
---|
275 | end; |
---|
276 | |
---|
277 | function out = sestrremove(in,removed_elements); |
---|
278 | % Removes elements from regressor |
---|
279 | n_strL = length(in.strL); |
---|
280 | out = in; |
---|
281 | for f=removed_elements; |
---|
282 | posit1 = find(out.strL==1); |
---|
283 | positf = find(out.strL==f); |
---|
284 | for g=(positf-1):-1:posit1; |
---|
285 | % BEGIN: We are swapping g and g+1 NOW!!!! |
---|
286 | [out.L, out.d] = seswapudl(out.L, out.d, g); |
---|
287 | [out.L0, out.d0] = seswapudl(out.L0, out.d0, g); |
---|
288 | out.strL([g g+1]) = [out.strL(g+1) out.strL(g)]; |
---|
289 | % END |
---|
290 | end; |
---|
291 | end; |
---|
292 | out.posit1 = find(out.strL==1); |
---|
293 | out.strRgr = out.strL((out.posit1+1):n_strL); |
---|
294 | out.strMis = out.strL(1:(out.posit1-1)); |
---|
295 | out.bitstr = str_bitres(out.bitstr,removed_elements,out.nbits); |
---|
296 | out.loglik = seloglik1(out); |
---|
297 | |
---|
298 | function out = sestrinsert(in,inserted_elements); |
---|
299 | % Moves elements into regressor |
---|
300 | n_strL = length(in.strL); |
---|
301 | out = in; |
---|
302 | for f=inserted_elements; |
---|
303 | posit1 = find(out.strL==1); |
---|
304 | positf = find(out.strL==f); |
---|
305 | for g=positf:(posit1-1); |
---|
306 | % BEGIN: We are swapping g and g+1 NOW!!!! |
---|
307 | [out.L, out.d] = seswapudl(out.L, out.d, g); |
---|
308 | [out.L0, out.d0] = seswapudl(out.L0, out.d0, g); |
---|
309 | out.strL([g g+1]) = [out.strL(g+1) out.strL(g)]; |
---|
310 | % END |
---|
311 | end; |
---|
312 | end; |
---|
313 | out.posit1 = find(out.strL==1); |
---|
314 | out.strRgr = out.strL((out.posit1+1):n_strL); |
---|
315 | out.strMis = out.strL(1:(out.posit1-1)); |
---|
316 | out.bitstr = str_bitset(out.bitstr,inserted_elements,out.nbits); |
---|
317 | out.loglik = seloglik1(out); |
---|
318 | |
---|
319 | % |
---|
320 | % seloglik_real = seloglik1 + seloglik2 |
---|
321 | % |
---|
322 | |
---|
323 | function l = seloglik1(in) |
---|
324 | % This is the loglikelihood (non-constant part) - this should be used in |
---|
325 | % frequent computation |
---|
326 | len = length(in.d); |
---|
327 | p1 = in.posit1; |
---|
328 | |
---|
329 | i1 = -0.5*in.nu *log(in.d (p1)) -0.5*sum(log(in.d ((p1+1):len))); |
---|
330 | i0 = -0.5*in.nu0*log(in.d0(p1)) -0.5*sum(log(in.d0((p1+1):len))); |
---|
331 | l = i1-i0; |
---|
332 | |
---|
333 | % DEBUGGing print: |
---|
334 | % fprintf('SELOGLIK1: str=%s loglik=%g\n', strPrintstr(in), l); |
---|
335 | |
---|
336 | |
---|
337 | function l = seloglik2(in) |
---|
338 | % This is the loglikelihood (constant part) - this should be added to |
---|
339 | % everything at the end. It needs some computation, so it is useless to |
---|
340 | % make it for all the stuff |
---|
341 | logpi = log(pi); |
---|
342 | |
---|
343 | i1 = gammaln(in.nu /2) - 0.5*in.nu *logpi; |
---|
344 | i0 = gammaln(in.nu0/2) - 0.5*in.nu0*logpi; |
---|
345 | l = i1-i0; |
---|
346 | |
---|
347 | |
---|
348 | function [Lout, dout] = seswapudl(L,d,i); |
---|
349 | %SESWAPUDL swaps information matrix in decomposition V=L^T diag(d) L |
---|
350 | % |
---|
351 | % [Lout, dout] = seswapudl(L,d,i); |
---|
352 | % |
---|
353 | % L : lower triangular matrix with 1's on diagonal of the decomposistion |
---|
354 | % d : diagonal vector of diagonal matrix of the decomposition |
---|
355 | % i : index of line to be swapped with the next one |
---|
356 | % Lout : output lower triangular matrix |
---|
357 | % dout : output diagional vector of diagonal matrix D |
---|
358 | % |
---|
359 | % Description: |
---|
360 | % Lout' * diag(dout) * Lout = P(i,i+1) * L' * diag(d) * L * P(i,i+1); |
---|
361 | % |
---|
362 | % Where permutation matrix P(i,j) permutates columns if applied from the |
---|
363 | % right and line if applied from the left. |
---|
364 | % |
---|
365 | % Note: naming: |
---|
366 | % se = structure estimation |
---|
367 | % lite = light, simple |
---|
368 | % udl = U*D*L, or more precisely, L'*D*L, also called as ld |
---|
369 | % |
---|
370 | % Design : L. Tesar |
---|
371 | % Updated : Feb 2003 |
---|
372 | % Project : post-ProDaCTool |
---|
373 | % Reference: sedydr |
---|
374 | |
---|
375 | j = i+1; |
---|
376 | |
---|
377 | pomd = d(i); |
---|
378 | d(i) = d(j); |
---|
379 | d(j) = pomd; |
---|
380 | |
---|
381 | pomL = L(i,:); |
---|
382 | L(i,:) = L(j,:); |
---|
383 | L(j,:) = pomL; |
---|
384 | |
---|
385 | pomL = L(:,i); |
---|
386 | L(:,i) = L(:,j); |
---|
387 | L(:,j) = pomL; |
---|
388 | |
---|
389 | % We must be working with LINES of matrix L ! |
---|
390 | |
---|
391 | r = L(i,:)'; |
---|
392 | f = L(j,:)'; |
---|
393 | Dr = d(i); |
---|
394 | Df = d(j); |
---|
395 | |
---|
396 | [r, f, Dr, Df] = sedydr(r, f, Dr, Df, j); |
---|
397 | |
---|
398 | r0 = r(i); |
---|
399 | Dr = Dr*r0*r0; |
---|
400 | r = r/r0; |
---|
401 | |
---|
402 | L(i,:) = r'; |
---|
403 | L(j,:) = f'; |
---|
404 | d(i) = Dr; |
---|
405 | d(j) = Df; |
---|
406 | |
---|
407 | L(i,i) = 1; |
---|
408 | L(j,j) = 1; |
---|
409 | |
---|
410 | Lout = L; |
---|
411 | dout = d; |
---|
412 | |
---|
413 | function [rout, fout, Drout, Dfout, kr] = sedydr(r,f,Dr,Df,R,jl,jh); |
---|
414 | %SEDYDR dyadic reduction, performs transformation of sum of 2 dyads |
---|
415 | % |
---|
416 | % [rout, fout, Drout, Dfout, kr] = sedydr(r,f,Dr,Df,R,jl,jh); |
---|
417 | % [rout, fout, Drout, Dfout] = sedydr(r,f,Dr,Df,R); |
---|
418 | % |
---|
419 | % Description: dyadic reduction, performs transformation of sum of |
---|
420 | % 2 dyads r*Dr*r'+ f*Df*f' so that the element of r pointed by R is zeroed |
---|
421 | % |
---|
422 | % r : column vector of reduced dyad |
---|
423 | % f : column vector of reducing dyad |
---|
424 | % Dr : scalar with weight of reduced dyad |
---|
425 | % Df : scalar with weight of reducing dyad |
---|
426 | % R : scalar number giving 1 based index to the element of r, |
---|
427 | % which is to be reduced to |
---|
428 | % zero; the corresponding element of f is assumed to be 1. |
---|
429 | % jl : lower index of the range within which the dyads are |
---|
430 | % modified (can be omitted, then everything is updated) |
---|
431 | % jh : upper index of the range within which the dyads are |
---|
432 | % modified (can be omitted then everything is updated) |
---|
433 | % rout,fout,Drout,dfout : resulting two dyads |
---|
434 | % kr : coefficient used in the transformation of r |
---|
435 | % rnew = r + kr*f |
---|
436 | % |
---|
437 | % Description: dyadic reduction, performs transformation of sum of |
---|
438 | % 2 dyads r*Dr*r'+ f*Df*f' so that the element of r indexed by R is zeroed |
---|
439 | % Remark1: Constant mzero means machine zero and should be modified |
---|
440 | % according to the precision of particular machine |
---|
441 | % Remark2: jl and jh are, in fact, obsolete. It takes longer time to |
---|
442 | % compute them compared to plain version. The reason is that we |
---|
443 | % are doing vector operations in m-file. Other reason is that |
---|
444 | % we need to copy whole vector anyway. It can save half of time for |
---|
445 | % c-file, if you use it correctly. (please do tests) |
---|
446 | % |
---|
447 | % Note: naming: |
---|
448 | % se = structure estimation |
---|
449 | % dydr = dyadic reduction |
---|
450 | % |
---|
451 | % Original Fortran design: V. Peterka 17-7-89 |
---|
452 | % Modified for c-language: probably R. Kulhavy |
---|
453 | % Modified for m-language: L. Tesar 2/2003 |
---|
454 | % Updated: Feb 2003 |
---|
455 | % Project: post-ProDaCTool |
---|
456 | % Reference: none |
---|
457 | |
---|
458 | if nargin<6; |
---|
459 | update_whole=1; |
---|
460 | else |
---|
461 | update_whole=0; |
---|
462 | end; |
---|
463 | |
---|
464 | mzero = 1e-32; |
---|
465 | |
---|
466 | if Dr<mzero; |
---|
467 | Dr=0; |
---|
468 | end; |
---|
469 | |
---|
470 | r0 = r(R); |
---|
471 | kD = Df; |
---|
472 | kr = r0 * Dr; |
---|
473 | Dfout = kD + r0 * kr; |
---|
474 | |
---|
475 | if Dfout > mzero; |
---|
476 | kD = kD / Dfout; |
---|
477 | kr = kr / Dfout; |
---|
478 | else; |
---|
479 | kD = 1; |
---|
480 | kr = 0; |
---|
481 | end; |
---|
482 | |
---|
483 | Drout = Dr * kD; |
---|
484 | |
---|
485 | % Try to uncomment marked stuff (*) if in numerical problems, but I don't |
---|
486 | % think it can make any difference for normal healthy floating-point unit |
---|
487 | if update_whole; |
---|
488 | rout = r - r0*f; |
---|
489 | % rout(R) = 0; % * could be needed for some nonsense cases(or numeric reasons?), normally not |
---|
490 | fout = f + kr*rout; |
---|
491 | % fout(R) = 1; % * could be needed for some nonsense cases(or numeric reasons?), normally not |
---|
492 | else; |
---|
493 | rout = r; |
---|
494 | fout = f; |
---|
495 | rout(jl:jh) = r(jl:jh) - r0 * f(jl:jh); |
---|
496 | rout(R) = 0; |
---|
497 | fout(jl:jh) = f(jl:jh) + kr * rout(jl:jh); |
---|
498 | end; |
---|
499 | |
---|
500 | |
---|
501 | |
---|
502 | |
---|
503 | |
---|
504 | |
---|