| 1 | function [strout, rgrsout, statistics] = straux1(L, d, nu, L0, d0, nu0, belief, nbest, max_nrep, lambda, order_k); | 
|---|
| 2 | % structure estimation based on LD decomposition | 
|---|
| 3 | % | 
|---|
| 4 | % This m/mex file is internally called by facstr, IT IS NOT TO BE CALLED | 
|---|
| 5 | % BY USER!! Documentation guiven for reference. | 
|---|
| 6 | % | 
|---|
| 7 | % | 
|---|
| 8 | % [strout, rgrsout, statistics] = straux1(L, d, nu, L0, d0, nu0, belief, nbest, max_nrep, lambda, order_k); | 
|---|
| 9 | % | 
|---|
| 10 | % L   : Actual LD decomposition based on data | 
|---|
| 11 | % d   : Actual LD decomposition based on data | 
|---|
| 12 | % nu  : Actual data amount | 
|---|
| 13 | % L0  : prior information | 
|---|
| 14 | % d0  : prior information | 
|---|
| 15 | % nu0 : prior data amount | 
|---|
| 16 | % belief: user's belief on maximum structure items | 
|---|
| 17 | %         (1 items must     be present, 2 items are probably     present | 
|---|
| 18 | %          4 items must not be present, 3 items are probably not present) | 
|---|
| 19 | %          2 and 3 is the same | 
|---|
| 20 | % nbest : how many "best" regressors are maintained | 
|---|
| 21 | % strout : structure estimated (of the regressor, richest is 2:length(d) | 
|---|
| 22 | % max_nrep  : maximal number of random starts in search for the best | 
|---|
| 23 | %             structure | 
|---|
| 24 | % lambda : stooping rule threshold | 
|---|
| 25 | % order_k : order of k | 
|---|
| 26 | % | 
|---|
| 27 | % Design  : L. Tesar | 
|---|
| 28 | % Updated : Feb-Apr 2003 | 
|---|
| 29 | % Project : post-ProDaCTool | 
|---|
| 30 | % References: (only local inline functions) | 
|---|
| 31 | % | 
|---|
| 32 | % Todo: in add_new, we need to implement structure comparison, instead of | 
|---|
| 33 | % loglikelihood comparison: ~any(logliks == new.loglik) | 
|---|
| 34 |  | 
|---|
| 35 | % randun seed stuff: | 
|---|
| 36 | %global SEED | 
|---|
| 37 | %SEED = randn('seed'); | 
|---|
| 38 |  | 
|---|
| 39 | % Argument's checking: | 
|---|
| 40 | if nargin<8; | 
|---|
| 41 | if nargout>=2; | 
|---|
| 42 | nbest = 10; | 
|---|
| 43 | else | 
|---|
| 44 | % If we don't need the second parameter it is better to avoid | 
|---|
| 45 | % calculating it at all, because it is very costly (5x slowdown). | 
|---|
| 46 | nbest = 1; | 
|---|
| 47 | end; | 
|---|
| 48 | end; | 
|---|
| 49 |  | 
|---|
| 50 | if nargin< 6, error('Incorrect number of input parameters in straux1'); end; | 
|---|
| 51 | if nargin< 7, belief   = []; end;   % Don't belive anybody. | 
|---|
| 52 | if nargin< 9, max_nrep = 300; end; | 
|---|
| 53 | if nargin<10, lambda   = 0.75; end; | 
|---|
| 54 | if nargin<11, order_k  = 2; end; | 
|---|
| 55 | % Arguments were just checked. | 
|---|
| 56 |  | 
|---|
| 57 | n_data = length(d); | 
|---|
| 58 |  | 
|---|
| 59 | belief_out = find(belief==4)+1; % we are avoiding to put this into regressor | 
|---|
| 60 | belief_in  = find(belief==1)+1; % we are instantly keeping this in regressor | 
|---|
| 61 |  | 
|---|
| 62 | full.d0  = d0; | 
|---|
| 63 | full.nu0 = nu0; | 
|---|
| 64 | full.L0  = L0; | 
|---|
| 65 | full.L   = L; | 
|---|
| 66 | full.d   = d; | 
|---|
| 67 | full.nu  = nu; | 
|---|
| 68 | full.strL = 1:n_data;                 % Current structure of L and d | 
|---|
| 69 | full.strRgr = 2:n_data;               % Structure elements currently inside regressor (after regressand) | 
|---|
| 70 | full.strMis = [];                     % structure elements, that are currently outside regressor (before regressand) | 
|---|
| 71 | full.posit1 = 1;                      % regressand position | 
|---|
| 72 | full.nbits  = floor(log2(bitmax))-1;  % number of bits available in double | 
|---|
| 73 | full.bitstr = str_bitset(zeros(1,floor(n_data/full.nbits)+1),full.strRgr,full.nbits); | 
|---|
| 74 | full.loglik = seloglik1(full);        % loglikelihood | 
|---|
| 75 |  | 
|---|
| 76 | % construct full and empty structure | 
|---|
| 77 | full = sestrremove(full,belief_out); | 
|---|
| 78 | empty = sestrremove(full,setdiff(full.strRgr,belief_in)); | 
|---|
| 79 |  | 
|---|
| 80 | % stopping rule calculation: | 
|---|
| 81 | local_max = []; | 
|---|
| 82 | muto = 0; | 
|---|
| 83 |  | 
|---|
| 84 | % statistics: | 
|---|
| 85 | cputime0 = cputime; | 
|---|
| 86 | if nargout>=3; | 
|---|
| 87 | mutos = zeros(1,max_nrep+2); | 
|---|
| 88 | maxmutos = zeros(1,max_nrep+2); | 
|---|
| 89 | end; | 
|---|
| 90 | % ---------------------- | 
|---|
| 91 |  | 
|---|
| 92 | % For stopping-rule calculation | 
|---|
| 93 | %so       = 2^(n_data -1-length(belief_in)- length(belief_out)); % do we use this ? | 
|---|
| 94 | % ---------------------- | 
|---|
| 95 |  | 
|---|
| 96 | all_str = 1:n_data; | 
|---|
| 97 |  | 
|---|
| 98 | global_best = full; | 
|---|
| 99 |  | 
|---|
| 100 | % MAIN LOOP is here. | 
|---|
| 101 | for n_start = -1:max_nrep; | 
|---|
| 102 | to = n_start+2; | 
|---|
| 103 |  | 
|---|
| 104 | if n_start == -1; | 
|---|
| 105 | % start from the full structure | 
|---|
| 106 | last = full; | 
|---|
| 107 | elseif n_start == 0; | 
|---|
| 108 | % start from the empty structure | 
|---|
| 109 | last = empty; | 
|---|
| 110 | else | 
|---|
| 111 | % start from random structure | 
|---|
| 112 | last_str = find([ 0 floor(2*randun(1,n_data-1))]); % this creates random vector consisting of indexes, and sorted | 
|---|
| 113 | last = sestrremove(full,setdiff(all_str,[1 last_str empty.strRgr])); | 
|---|
| 114 | end; | 
|---|
| 115 |  | 
|---|
| 116 | % DEBUGging print: | 
|---|
| 117 | %fprintf('STRUCTURE generated            in loop %2i was %s\n', n_start, strPrintstr(last)); | 
|---|
| 118 |  | 
|---|
| 119 | % The loop is repeated until likelihood stops growing (break condition | 
|---|
| 120 | % used at the end; | 
|---|
| 121 | while 1; | 
|---|
| 122 |  | 
|---|
| 123 | % This structure is going to hold the best elements | 
|---|
| 124 | best = last; | 
|---|
| 125 | % Nesting by removing elements (enpoorment) | 
|---|
| 126 | for removed_item = setdiff(last.strRgr,belief_in); | 
|---|
| 127 | new = sestrremove(last,removed_item); | 
|---|
| 128 | if nbest>1; | 
|---|
| 129 | global_best = add_new(global_best,new,nbest); | 
|---|
| 130 | end; | 
|---|
| 131 | if new.loglik>best.loglik; | 
|---|
| 132 | best = new; | 
|---|
| 133 | end; | 
|---|
| 134 | end; | 
|---|
| 135 | % Nesting by adding elements (enrichment) | 
|---|
| 136 | for added_item = setdiff(last.strMis,belief_out); | 
|---|
| 137 | new = sestrinsert(last,added_item); | 
|---|
| 138 | if nbest>1; | 
|---|
| 139 | global_best = add_new(global_best,new,nbest); | 
|---|
| 140 | end; | 
|---|
| 141 | if new.loglik>best.loglik; | 
|---|
| 142 | best = new; | 
|---|
| 143 | end; | 
|---|
| 144 | end; | 
|---|
| 145 |  | 
|---|
| 146 | % Break condition if likelihood does not change. | 
|---|
| 147 | if best.loglik <= last.loglik; | 
|---|
| 148 | break; | 
|---|
| 149 | else | 
|---|
| 150 | % Making best structure last structure. | 
|---|
| 151 | last = best; | 
|---|
| 152 | end; | 
|---|
| 153 |  | 
|---|
| 154 | end; | 
|---|
| 155 |  | 
|---|
| 156 | % DEBUGging print: | 
|---|
| 157 | %fprintf('STRUCTURE found (local maxima) in loop %2i was %s randun_seed=%11lu randun_counter=%4lu\n', n_start, strPrintstr(best), randn('seed'), RANDUN_COUNTER); | 
|---|
| 158 |  | 
|---|
| 159 | % Collecting of the best structure in case we don't need the second parameter | 
|---|
| 160 | if nbest<=1; | 
|---|
| 161 | if best.loglik>global_best.loglik; | 
|---|
| 162 | global_best = best; | 
|---|
| 163 | end; | 
|---|
| 164 | end; | 
|---|
| 165 |  | 
|---|
| 166 | % uniqueness of the structure found | 
|---|
| 167 | if ~ismember(best.bitstr,local_max,'rows'); | 
|---|
| 168 | local_max = [local_max ; best.bitstr]; | 
|---|
| 169 | muto = muto + 1; | 
|---|
| 170 | end; | 
|---|
| 171 |  | 
|---|
| 172 | % stopping rule: | 
|---|
| 173 | maxmuto = (to-order_k-1)/lambda-to+1; | 
|---|
| 174 | if to>2; | 
|---|
| 175 | if maxmuto>=muto; | 
|---|
| 176 | % fprintf('*'); | 
|---|
| 177 | break; | 
|---|
| 178 | end; | 
|---|
| 179 | end; | 
|---|
| 180 |  | 
|---|
| 181 | % do statistics if necessary: | 
|---|
| 182 | if nargout>=3; | 
|---|
| 183 | mutos(to)    = muto; | 
|---|
| 184 | maxmutos(to) = maxmuto; | 
|---|
| 185 | end; | 
|---|
| 186 | end; | 
|---|
| 187 |  | 
|---|
| 188 | % Aftermath: The best structure was in: global_best | 
|---|
| 189 |  | 
|---|
| 190 | % Updating loglikelihoods: we have to add the constant stuff | 
|---|
| 191 | for f=1:length(global_best); | 
|---|
| 192 | global_best(f).loglik = global_best(f).loglik + seloglik2(global_best(f)); | 
|---|
| 193 | end; | 
|---|
| 194 |  | 
|---|
| 195 | % Making first output parameter: | 
|---|
| 196 | [lik i] = max([global_best.loglik]); | 
|---|
| 197 | best = global_best(i); | 
|---|
| 198 | strout = best.strRgr; | 
|---|
| 199 |  | 
|---|
| 200 | % Making the second output parameter | 
|---|
| 201 | [lik i] = sort([global_best.loglik]); | 
|---|
| 202 | rgrsout = global_best(i(length(i):-1:1)); | 
|---|
| 203 |  | 
|---|
| 204 | if (nargout>=3); | 
|---|
| 205 | statistics.allstrs = 2^(n_data -1-length(belief_in) - length(belief_out)); | 
|---|
| 206 | statistics.nrand   = to-2; | 
|---|
| 207 | statistics.unique  = muto; | 
|---|
| 208 | statistics.to  = to; | 
|---|
| 209 | statistics.cputime_seconds = cputime - cputime0; | 
|---|
| 210 | statistics.itemspeed       = statistics.to / statistics.cputime_seconds; | 
|---|
| 211 | statistics.muto = muto; | 
|---|
| 212 | statistics.mutos = mutos; | 
|---|
| 213 | statistics.maxmutos = maxmutos; | 
|---|
| 214 | end; | 
|---|
| 215 |  | 
|---|
| 216 | % randun seed stuff: | 
|---|
| 217 | %randn('seed',SEED); | 
|---|
| 218 |  | 
|---|
| 219 | % --------------------- END of MAIN program -------------------- | 
|---|
| 220 |  | 
|---|
| 221 | % This is needed for bitstr manipulations | 
|---|
| 222 | function out = str_bitset(in,ns,nbits) | 
|---|
| 223 | out = in; | 
|---|
| 224 | for n = ns; | 
|---|
| 225 | index = 1+floor((n-2)/nbits); | 
|---|
| 226 | bitindex = 1+rem(n-2,nbits); | 
|---|
| 227 | out(index) = bitset(out(index),bitindex); | 
|---|
| 228 | end; | 
|---|
| 229 | function out = str_bitres(in,ns,nbits) | 
|---|
| 230 | out = in; | 
|---|
| 231 | for n = ns; | 
|---|
| 232 | index = 1+floor((n-2)/nbits); | 
|---|
| 233 | bitindex = 1+rem(n-2,nbits); | 
|---|
| 234 | mask = bitset(0,bitindex); | 
|---|
| 235 | out(index) = bitxor(bitor(out(index),mask),mask); | 
|---|
| 236 | end; | 
|---|
| 237 |  | 
|---|
| 238 | function out = strPrintstr(in) | 
|---|
| 239 | out = '0'; | 
|---|
| 240 | nbits = in.nbits; | 
|---|
| 241 | for f = 2:length(in.d0); | 
|---|
| 242 | index = 1+floor((f-2)/nbits); | 
|---|
| 243 | bitindex = 1+rem(f-2,nbits); | 
|---|
| 244 | if bitget(in.bitstr(index),bitindex); | 
|---|
| 245 | out(f) = '1'; | 
|---|
| 246 | else; | 
|---|
| 247 | out(f) = '0'; | 
|---|
| 248 | end; | 
|---|
| 249 | end; | 
|---|
| 250 |  | 
|---|
| 251 | function global_best_out = add_new(global_best,new,nbest) | 
|---|
| 252 | % Eventually add to global best, but do not go over nbest values | 
|---|
| 253 | % Also avoids repeating things, which makes this function awfully slow | 
|---|
| 254 | if length(global_best)>=nbest; | 
|---|
| 255 | logliks = [global_best.loglik]; | 
|---|
| 256 | [loglik i] = min(logliks); | 
|---|
| 257 | global_best_out = global_best; | 
|---|
| 258 | if loglik<new.loglik; | 
|---|
| 259 | %         if ~any(logliks == new.loglik); | 
|---|
| 260 | addit=1; | 
|---|
| 261 | for f = [global_best.bitstr]; | 
|---|
| 262 | if f == new.bitstr; | 
|---|
| 263 | addit = 0; | 
|---|
| 264 | break; | 
|---|
| 265 | end; | 
|---|
| 266 | end; | 
|---|
| 267 | if addit; | 
|---|
| 268 | global_best_out(i) = new; | 
|---|
| 269 | % DEBUGging print: | 
|---|
| 270 | % fprintf('ADDED structure, add_new: %s, loglik=%g\n', strPrintstr(new), new.loglik); | 
|---|
| 271 | end; | 
|---|
| 272 | end; | 
|---|
| 273 | else; | 
|---|
| 274 | global_best_out = [global_best new]; | 
|---|
| 275 | end; | 
|---|
| 276 |  | 
|---|
| 277 | function out = sestrremove(in,removed_elements); | 
|---|
| 278 | % Removes elements from regressor | 
|---|
| 279 | n_strL = length(in.strL); | 
|---|
| 280 | out = in; | 
|---|
| 281 | for f=removed_elements; | 
|---|
| 282 | posit1 = find(out.strL==1); | 
|---|
| 283 | positf = find(out.strL==f); | 
|---|
| 284 | for g=(positf-1):-1:posit1; | 
|---|
| 285 | % BEGIN: We are swapping g and g+1 NOW!!!! | 
|---|
| 286 | [out.L, out.d]   = seswapudl(out.L, out.d, g); | 
|---|
| 287 | [out.L0, out.d0]   = seswapudl(out.L0, out.d0, g); | 
|---|
| 288 | out.strL([g g+1]) = [out.strL(g+1) out.strL(g)]; | 
|---|
| 289 | % END | 
|---|
| 290 | end; | 
|---|
| 291 | end; | 
|---|
| 292 | out.posit1 = find(out.strL==1); | 
|---|
| 293 | out.strRgr = out.strL((out.posit1+1):n_strL); | 
|---|
| 294 | out.strMis = out.strL(1:(out.posit1-1)); | 
|---|
| 295 | out.bitstr = str_bitres(out.bitstr,removed_elements,out.nbits); | 
|---|
| 296 | out.loglik = seloglik1(out); | 
|---|
| 297 |  | 
|---|
| 298 | function out = sestrinsert(in,inserted_elements); | 
|---|
| 299 | % Moves elements into regressor | 
|---|
| 300 | n_strL = length(in.strL); | 
|---|
| 301 | out = in; | 
|---|
| 302 | for f=inserted_elements; | 
|---|
| 303 | posit1 = find(out.strL==1); | 
|---|
| 304 | positf = find(out.strL==f); | 
|---|
| 305 | for g=positf:(posit1-1); | 
|---|
| 306 | % BEGIN: We are swapping g and g+1 NOW!!!! | 
|---|
| 307 | [out.L,  out.d]   = seswapudl(out.L,  out.d,  g); | 
|---|
| 308 | [out.L0, out.d0]  = seswapudl(out.L0, out.d0, g); | 
|---|
| 309 | out.strL([g g+1]) = [out.strL(g+1) out.strL(g)]; | 
|---|
| 310 | % END | 
|---|
| 311 | end; | 
|---|
| 312 | end; | 
|---|
| 313 | out.posit1 = find(out.strL==1); | 
|---|
| 314 | out.strRgr = out.strL((out.posit1+1):n_strL); | 
|---|
| 315 | out.strMis = out.strL(1:(out.posit1-1)); | 
|---|
| 316 | out.bitstr = str_bitset(out.bitstr,inserted_elements,out.nbits); | 
|---|
| 317 | out.loglik = seloglik1(out); | 
|---|
| 318 |  | 
|---|
| 319 | % | 
|---|
| 320 | % seloglik_real = seloglik1 + seloglik2 | 
|---|
| 321 | % | 
|---|
| 322 |  | 
|---|
| 323 | function l = seloglik1(in) | 
|---|
| 324 | % This is the loglikelihood (non-constant part) - this should be used in | 
|---|
| 325 | % frequent computation | 
|---|
| 326 | len = length(in.d); | 
|---|
| 327 | p1  = in.posit1; | 
|---|
| 328 |  | 
|---|
| 329 | i1 = -0.5*in.nu *log(in.d (p1)) -0.5*sum(log(in.d ((p1+1):len))); | 
|---|
| 330 | i0 = -0.5*in.nu0*log(in.d0(p1)) -0.5*sum(log(in.d0((p1+1):len))); | 
|---|
| 331 | l  = i1-i0; | 
|---|
| 332 |  | 
|---|
| 333 | % DEBUGGing print: | 
|---|
| 334 | % fprintf('SELOGLIK1: str=%s loglik=%g\n', strPrintstr(in), l); | 
|---|
| 335 |  | 
|---|
| 336 |  | 
|---|
| 337 | function l = seloglik2(in) | 
|---|
| 338 | % This is the loglikelihood (constant part) - this should be added to | 
|---|
| 339 | % everything at the end. It needs some computation, so it is useless to | 
|---|
| 340 | % make it for all the stuff | 
|---|
| 341 | logpi = log(pi); | 
|---|
| 342 |  | 
|---|
| 343 | i1 = gammaln(in.nu /2) - 0.5*in.nu *logpi; | 
|---|
| 344 | i0 = gammaln(in.nu0/2) - 0.5*in.nu0*logpi; | 
|---|
| 345 | l  = i1-i0; | 
|---|
| 346 |  | 
|---|
| 347 |  | 
|---|
| 348 | function [Lout, dout] = seswapudl(L,d,i); | 
|---|
| 349 | %SESWAPUDL swaps information matrix in decomposition V=L^T diag(d) L | 
|---|
| 350 | % | 
|---|
| 351 | %  [Lout, dout] = seswapudl(L,d,i); | 
|---|
| 352 | % | 
|---|
| 353 | % L : lower triangular matrix with 1's on diagonal of the decomposistion | 
|---|
| 354 | % d : diagonal vector of diagonal matrix of the decomposition | 
|---|
| 355 | % i : index of line to be swapped with the next one | 
|---|
| 356 | % Lout : output lower triangular matrix | 
|---|
| 357 | % dout : output diagional vector of diagonal matrix D | 
|---|
| 358 | % | 
|---|
| 359 | % Description: | 
|---|
| 360 | %  Lout' * diag(dout) * Lout = P(i,i+1) * L' * diag(d) * L * P(i,i+1); | 
|---|
| 361 | % | 
|---|
| 362 | %  Where permutation matrix P(i,j) permutates columns if applied from the | 
|---|
| 363 | %  right and line if applied from the left. | 
|---|
| 364 | % | 
|---|
| 365 | % Note: naming: | 
|---|
| 366 | %       se = structure estimation | 
|---|
| 367 | %       lite = light, simple | 
|---|
| 368 | %       udl = U*D*L, or more precisely, L'*D*L, also called as ld | 
|---|
| 369 | % | 
|---|
| 370 | % Design  : L. Tesar | 
|---|
| 371 | % Updated : Feb 2003 | 
|---|
| 372 | % Project : post-ProDaCTool | 
|---|
| 373 | % Reference: sedydr | 
|---|
| 374 |  | 
|---|
| 375 | j = i+1; | 
|---|
| 376 |  | 
|---|
| 377 | pomd = d(i); | 
|---|
| 378 | d(i) = d(j); | 
|---|
| 379 | d(j) = pomd; | 
|---|
| 380 |  | 
|---|
| 381 | pomL   = L(i,:); | 
|---|
| 382 | L(i,:) = L(j,:); | 
|---|
| 383 | L(j,:) = pomL; | 
|---|
| 384 |  | 
|---|
| 385 | pomL   = L(:,i); | 
|---|
| 386 | L(:,i) = L(:,j); | 
|---|
| 387 | L(:,j) = pomL; | 
|---|
| 388 |  | 
|---|
| 389 | % We must be working with LINES of matrix L ! | 
|---|
| 390 |  | 
|---|
| 391 | r  = L(i,:)'; | 
|---|
| 392 | f  = L(j,:)'; | 
|---|
| 393 | Dr = d(i); | 
|---|
| 394 | Df = d(j); | 
|---|
| 395 |  | 
|---|
| 396 | [r, f, Dr, Df] = sedydr(r, f, Dr, Df, j); | 
|---|
| 397 |  | 
|---|
| 398 | r0 = r(i); | 
|---|
| 399 | Dr = Dr*r0*r0; | 
|---|
| 400 | r  = r/r0; | 
|---|
| 401 |  | 
|---|
| 402 | L(i,:) = r'; | 
|---|
| 403 | L(j,:) = f'; | 
|---|
| 404 | d(i)   = Dr; | 
|---|
| 405 | d(j)   = Df; | 
|---|
| 406 |  | 
|---|
| 407 | L(i,i) = 1; | 
|---|
| 408 | L(j,j) = 1; | 
|---|
| 409 |  | 
|---|
| 410 | Lout = L; | 
|---|
| 411 | dout = d; | 
|---|
| 412 |  | 
|---|
| 413 | function [rout, fout, Drout, Dfout, kr] = sedydr(r,f,Dr,Df,R,jl,jh); | 
|---|
| 414 | %SEDYDR dyadic reduction, performs transformation of sum of 2 dyads | 
|---|
| 415 | % | 
|---|
| 416 | % [rout, fout, Drout, Dfout, kr] = sedydr(r,f,Dr,Df,R,jl,jh); | 
|---|
| 417 | % [rout, fout, Drout, Dfout] = sedydr(r,f,Dr,Df,R); | 
|---|
| 418 | % | 
|---|
| 419 | % Description: dyadic reduction, performs transformation of sum of | 
|---|
| 420 | %  2 dyads r*Dr*r'+ f*Df*f' so that the element of r pointed by R is zeroed | 
|---|
| 421 | % | 
|---|
| 422 | %     r    : column vector of reduced dyad | 
|---|
| 423 | %     f    : column vector of reducing dyad | 
|---|
| 424 | %     Dr   : scalar with weight of reduced dyad | 
|---|
| 425 | %     Df   : scalar with weight of reducing dyad | 
|---|
| 426 | %     R    : scalar number giving 1 based index to the element of r, | 
|---|
| 427 | %            which is to be reduced to | 
|---|
| 428 | %            zero; the corresponding element of f is assumed to be 1. | 
|---|
| 429 | %     jl   : lower index of the range within which the dyads are | 
|---|
| 430 | %            modified (can be omitted, then everything is updated) | 
|---|
| 431 | %     jh   : upper index of the range within which the dyads are | 
|---|
| 432 | %            modified (can be omitted then everything is updated) | 
|---|
| 433 | %     rout,fout,Drout,dfout : resulting two dyads | 
|---|
| 434 | %     kr   : coefficient used in the transformation of r | 
|---|
| 435 | %            rnew = r + kr*f | 
|---|
| 436 | % | 
|---|
| 437 | % Description: dyadic reduction, performs transformation of sum of | 
|---|
| 438 | %            2 dyads r*Dr*r'+ f*Df*f' so that the element of r indexed by R is zeroed | 
|---|
| 439 | % Remark1: Constant mzero means machine zero and should be modified | 
|---|
| 440 | %           according to the precision of particular machine | 
|---|
| 441 | % Remark2: jl and jh are, in fact, obsolete. It takes longer time to | 
|---|
| 442 | %           compute them compared to plain version. The reason is that we | 
|---|
| 443 | %           are doing vector operations in m-file. Other reason is that | 
|---|
| 444 | %           we need to copy whole vector anyway. It can save half of time for | 
|---|
| 445 | %           c-file, if you use it correctly. (please do tests) | 
|---|
| 446 | % | 
|---|
| 447 | % Note: naming: | 
|---|
| 448 | %       se = structure estimation | 
|---|
| 449 | %       dydr = dyadic reduction | 
|---|
| 450 | % | 
|---|
| 451 | % Original Fortran design: V. Peterka 17-7-89 | 
|---|
| 452 | % Modified for c-language: probably R. Kulhavy | 
|---|
| 453 | % Modified for m-language: L. Tesar 2/2003 | 
|---|
| 454 | % Updated: Feb 2003 | 
|---|
| 455 | % Project: post-ProDaCTool | 
|---|
| 456 | % Reference: none | 
|---|
| 457 |  | 
|---|
| 458 | if nargin<6; | 
|---|
| 459 | update_whole=1; | 
|---|
| 460 | else | 
|---|
| 461 | update_whole=0; | 
|---|
| 462 | end; | 
|---|
| 463 |  | 
|---|
| 464 | mzero = 1e-32; | 
|---|
| 465 |  | 
|---|
| 466 | if Dr<mzero; | 
|---|
| 467 | Dr=0; | 
|---|
| 468 | end; | 
|---|
| 469 |  | 
|---|
| 470 | r0   = r(R); | 
|---|
| 471 | kD   = Df; | 
|---|
| 472 | kr   = r0 * Dr; | 
|---|
| 473 | Dfout   = kD + r0 * kr; | 
|---|
| 474 |  | 
|---|
| 475 | if Dfout > mzero; | 
|---|
| 476 | kD = kD / Dfout; | 
|---|
| 477 | kr = kr / Dfout; | 
|---|
| 478 | else; | 
|---|
| 479 | kD = 1; | 
|---|
| 480 | kr = 0; | 
|---|
| 481 | end; | 
|---|
| 482 |  | 
|---|
| 483 | Drout = Dr * kD; | 
|---|
| 484 |  | 
|---|
| 485 | % Try to uncomment marked stuff (*) if in numerical problems, but I don't | 
|---|
| 486 | % think it can make any difference for normal healthy floating-point unit | 
|---|
| 487 | if update_whole; | 
|---|
| 488 | rout = r - r0*f; | 
|---|
| 489 | %   rout(R) = 0;   % * could be needed for some nonsense cases(or numeric reasons?), normally not | 
|---|
| 490 | fout = f + kr*rout; | 
|---|
| 491 | %   fout(R) = 1;   % * could be needed for some nonsense cases(or numeric reasons?), normally not | 
|---|
| 492 | else; | 
|---|
| 493 | rout = r; | 
|---|
| 494 | fout = f; | 
|---|
| 495 | rout(jl:jh) = r(jl:jh) - r0 * f(jl:jh); | 
|---|
| 496 | rout(R) = 0; | 
|---|
| 497 | fout(jl:jh) = f(jl:jh) + kr * rout(jl:jh); | 
|---|
| 498 | end; | 
|---|
| 499 |  | 
|---|
| 500 |  | 
|---|
| 501 |  | 
|---|
| 502 |  | 
|---|
| 503 |  | 
|---|
| 504 |  | 
|---|