1 | #include <estim/arx.h> |
---|
2 | #include <estim/merger.h> |
---|
3 | #include <stat/libEF.h> |
---|
4 | #include <stat/loggers.h> |
---|
5 | //#include <stat/merger.h> |
---|
6 | using namespace bdm; |
---|
7 | |
---|
8 | //These lines are needed for use of cout and endl |
---|
9 | using std::cout; |
---|
10 | using std::endl; |
---|
11 | |
---|
12 | /*! \file |
---|
13 | Experiment for distributed identification using log-normal merging |
---|
14 | |
---|
15 | The purpose of this experiment is to test merging fragmental pdfs between two participants sharing the same parameter, a. However, this parameter has a different role in each model. |
---|
16 | |
---|
17 | Lets assume that: |
---|
18 | \dot |
---|
19 | digraph compart{ |
---|
20 | |
---|
21 | edge [fontname="FreeSans",fontsize=10,labelfontname="FreeSans",labelfontsize=10]; |
---|
22 | node [fontname="FreeSans",fontsize=10,shape=record]; |
---|
23 | |
---|
24 | rankdir=LR; |
---|
25 | |
---|
26 | U [label="u",height=0.2,width=0.4,color="white", fillcolor="white", style="filled" fontcolor="black"]; |
---|
27 | AR1 [label="a,b,r",height=0.2,width=0.4,color="black", fillcolor="white", style="filled" fontcolor="black"] |
---|
28 | U -> AR1 [color="midnightblue",style="solid"]; |
---|
29 | AR2 [label="a,c,r",height=0.2,width=0.4,color="black", fillcolor="white", style="filled" fontcolor="black"] |
---|
30 | AR1 -> AR2 [color="midnightblue",style="solid",label="y"]; |
---|
31 | Z [label="z",height=0.2,width=0.4,color="white", fillcolor="white", style="filled" fontcolor="black"]; |
---|
32 | AR2 -> Z [color="midnightblue",style="solid"]; |
---|
33 | |
---|
34 | |
---|
35 | } |
---|
36 | \enddot |
---|
37 | */ |
---|
38 | |
---|
39 | int main() { |
---|
40 | // Setup model |
---|
41 | RV y ( "{y }" ); |
---|
42 | RV u ( "{u }" ); |
---|
43 | RV z ( "{z }" ); |
---|
44 | RV a ("{a }"); |
---|
45 | RV b ("{b }"); RV ab = a; ab.add(b); |
---|
46 | RV c ("{c }"); RV ac = a; ac.add(c); |
---|
47 | RV r ("{r }"); |
---|
48 | |
---|
49 | double at = 1.5; |
---|
50 | double bt = 0.5; |
---|
51 | double ct = -0.5; |
---|
52 | double rt = 0.30; |
---|
53 | // Full system |
---|
54 | vec thy =vec_2 ( at,bt ); //Simulated system - zero for constant term |
---|
55 | vec thz =vec_2 ( at,ct ); //Simulated system - zero for constant term |
---|
56 | vec Thy = concat ( thy, vec_1(rt) ); //Full parameter |
---|
57 | vec Thz = concat ( thz, vec_1(rt) ); //Full parameter |
---|
58 | |
---|
59 | //ARX constructor |
---|
60 | mat V0 = 0.001*eye ( 3 ); V0 ( 0,0 ) = 1; // |
---|
61 | |
---|
62 | ARX P1; P1.set_rv(concat(ab,r)); |
---|
63 | P1.set_statistics(1, V0, -1 ); |
---|
64 | ARX P2; P2.set_rv(concat(ac,r)); |
---|
65 | P2.set_statistics(1, V0, -1 ); |
---|
66 | |
---|
67 | //Test estimation |
---|
68 | int ndat = 100; |
---|
69 | int t; |
---|
70 | |
---|
71 | // Logging |
---|
72 | dirfilelog L ( "exp/merg_2a",3 ); |
---|
73 | int Li_Data = L.add ( RV ( "{U Y Z }" ), "" ); |
---|
74 | // int Li_LL = L.add ( RV ( "{P1 P2 M1 M2 }" ), "LL" ); |
---|
75 | int Li_P1m = L.add ( concat ( ab,r ), "P1m" ); |
---|
76 | int Li_P2m = L.add ( concat ( ac,r ), "P2m" ); |
---|
77 | int Li_Mm = L.add ( concat ( ab,concat(r,c) ), "Mm" ); |
---|
78 | int Li_Th = L.add ( concat ( ab,concat(c,r) ), "T" ); |
---|
79 | L.init(); |
---|
80 | |
---|
81 | vec Ut ( ndat ); |
---|
82 | vec Yt ( ndat ); |
---|
83 | vec Zt ( ndat ); |
---|
84 | vec yt ( 1 ); |
---|
85 | |
---|
86 | //Proposal |
---|
87 | enorm<ldmat> g0; g0.set_rv(ab); |
---|
88 | g0.set_parameters ( "1 1 ",mat ( "1 0; 0 1" ) ); |
---|
89 | egamma g1;g1.set_rv(r); |
---|
90 | g1.set_parameters ( "2 ", "2" ); |
---|
91 | enorm<ldmat> g2; g2.set_rv(c); |
---|
92 | g2.set_parameters ( "1 ",mat ( "1" ) ); |
---|
93 | |
---|
94 | Array<const epdf*> A ( 3 ); A ( 0 ) = &g0; A ( 1 ) =&g1; A(2) = &g2; |
---|
95 | eprod G0; G0.set_parameters ( A ); |
---|
96 | |
---|
97 | vec rgru(2); |
---|
98 | vec rgry(2); |
---|
99 | Yt(0) = 0.1; |
---|
100 | Ut(0) = 0.0; |
---|
101 | for ( t=1; t<ndat; t++ ) { |
---|
102 | // True system |
---|
103 | Ut ( t ) = pow ( sin ( ( t/40.0 ) *pi ),3 ); |
---|
104 | rgru(0) = Ut(t); rgru(1) = Ut(t-1); |
---|
105 | Yt ( t ) = thy*rgru + rt * NorRNG(); |
---|
106 | rgry(0) = Yt(t); rgry(1) = Yt(t-1); |
---|
107 | Zt ( t ) = thz*rgry + rt * NorRNG(); |
---|
108 | |
---|
109 | // Bayes for all |
---|
110 | P1.bayes ( concat ( Yt ( t ),rgru ) ); |
---|
111 | P2.bayes ( concat ( Zt ( t ),rgry ) ); |
---|
112 | |
---|
113 | // Merge estimates |
---|
114 | mepdf eG1 ( P1._e() ); |
---|
115 | mepdf eG2 ( P2._e() ); |
---|
116 | Array<mpdf*> A ( 2 ); A ( 0 ) =&eG1;A ( 1 ) =&eG2; |
---|
117 | merger M ( A ); |
---|
118 | M.set_parameters ( 10, 100,3 ); //M._Mix().set_method(QB); |
---|
119 | //M2.set_parameters ( 100.0, 1000,3 ); //M2._Mix().set_method(QB); |
---|
120 | M.merge ( &G0 ); |
---|
121 | |
---|
122 | //Likelihood |
---|
123 | yt ( 0 ) = Yt ( t ); |
---|
124 | |
---|
125 | //Logger |
---|
126 | L.logit(Li_Data, vec_3(Ut(t), Yt(t), Zt(t))); |
---|
127 | L.logit(Li_P1m, P1._e()->mean()); |
---|
128 | L.logit(Li_P2m, P2._e()->mean()); |
---|
129 | L.logit(Li_Mm, M.mean()); |
---|
130 | L.logit(Li_Th, concat(thy,vec_2(ct,rt*rt))); |
---|
131 | L.step ( ); |
---|
132 | |
---|
133 | } |
---|
134 | L.finalize( ); |
---|
135 | L.itsave ( "merg_2a.it" ); |
---|
136 | cout << endl; |
---|
137 | } |
---|